首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first example of a self-assembling phenylpropyl ether based dendronized polymer has been reported and its preferred helical handedness has been determined. Dendronized polymer poly(10) and its nondendritic analogue poly(8) are high-cis-content polyphenylacetylenes (PPAs) prepared by using [Rh(nbd)Cl]2/NEt3 (nbd: 2,5-norbornadiene). Both polymers possess a stereocenter in their side chain, which selects a preferred helical handedness. Based on negative exciton chirality observed in the CD spectra of poly(10), we have designated this molecule as a right-handed helical polymer, which persists over a wide temperature range. Poly(10) self-organizes into both Phiioh and Phih lattices in bulk. The Phiioh-to-Phih transition is associated with thermoreversible cis-cisoidal to cis-transoidal isomerization of the helical PPA, accompanied by a dramatic decrease in the column diameter and a decrease in the pi-stacking correlation length along the column. A model for the right-handed helical dendronized PPA has been proposed wherein dendrons from adjacent column strata interdigitate to effectively fill space.  相似文献   

2.
Self-organizable dendronized helical polymers provide a suitable architecture for constructing molecular nanomachines capable of expressing their motions at macroscopic length scales. Nanomechanical function is demonstrated by a library of self-organized helical dendronized cis-transoidal polyphenylacetylenes ( cis-PPAs) that possess a first-order phase transition from a hexagonal columnar lattice with internal order (varphi h (io)) to a hexagonal columnar liquid crystal phase (varphi h). These polymers can function as nanomechanical actuators. When extruded as fibers, the self-organizable dendronized helical cis-PPAs form oriented bundles. Such fibers have been shown capable of work by displacing objects up to 250-times their mass. The helical cis-PPA backbone undergoes reversible extension and contraction on a single molecule length scale resulting from cisoid-to-transoid conformational isomerization of the cis-PPA. Furthermore, we clarify supramolecular structural properties necessary for the observed nanomechanical function.  相似文献   

3.
A library of eleven high cis-content cis-transoidal polyphenylacetylenes (PPAs) dendronized with self-assembling dendrons was prepared from a library of fifteen convergently synthesized macromonomers. Using [Rh(C triple bond CPh)(nbd)(PPh(3))(2)] (nbd=2,5-norbornadiene) in the presence of 10 equiv of N,N-dimethylaminopyridine, predictive control over molecular weight and narrow molecular weight distribution are obtained. The PPA backbone serves as a helical scaffold for the self-assembling dendrons. The dendron primary structure dictates the diameter of the cylindrical PPAs in bulk, both in the self-organized hexagonal columnar (Phi(h)) lattice determined by X-ray diffraction (XRD) and in monolayers on highly ordered pyrolytic graphite (HOPG) and mica visualized by atomic force microscopy (AFM). Thermal and bulk phase characteristics of the cylindrical PPAs reinforces the generality that flexible polymer backbones adopt a helical conformation within the cylindrical macromolecules generated by polymers jacketed with self-assembling dendrons.  相似文献   

4.
The synthesis of perylene 3,4:9,10-tetracarboxylic acid bisimides (PBIs) dendronized with first-generation dendrons containing 0 to 4 methylenic units (m) between the imide group and the dendron, (3,4,5)12G1-m-PBI, is reported. Structural analysis of their self-organized arrays by DSC, X-ray diffraction, molecular modeling, and solid-state (1)H NMR was carried out on oriented samples with heating and cooling rates of 20 to 0.2 °C/min. At high temperature, (3,4,5)12G1-m-PBI self-assemble into 2D-hexagonal columnar phases with intracolumnar order. At low temperature, they form orthorhombic (m = 0, 2, 3, 4) and monoclinic (m = 1) columnar arrays with 3D periodicity. The orthorhombic phase has symmetry close to hexagonal. For m = 0, 2, 3, 4 ,they consist of tetramers as basic units. The tetramers contain a pair of two molecules arranged side by side and another pair in the next stratum of the column, turned upside-down and rotated around the column axis at different angles for different m. In contrast, for m = 1, there is only one molecule in each stratum, with a four-strata 2(1) helical repeat. All molecules face up in one column, and down in the second column, of the monoclinic cell. This allows close and extended π-stacking, unlike in the disruptive up-down alteration from the case of m = 0, 2, 3, 4. Most of the 3D structures were observed only by cooling at rates of 1 °C/min or less. This complex helical self-assembly is representative for other classes of dendronized PBIs investigated for organic electronics and solar cells.  相似文献   

5.
6.
The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-3-PBI, was recently reported to self-assemble in complex helical columns containing tetramers of PBI as basic repeat unit. These tetramers contain a pair of two molecules arranged side-by-side and another pair in the next stratum of the column turned upside-down and rotated around the column axis. Intra- and intertetramer rotation angles and stacking distances are different. At high temperature, (3,4,5)12G1-3-PBI self-assembles via a thermodynamically controlled process in a 2D hexagonal columnar phase while at low temperature in a 3D orthorhombic columnar array via a kinetically controlled process. Here, we report the synthesis and structural analysis, by a combination of differential scanning calorimetry, X-ray and electron diffraction, and solid-state NMR performed at different temperatures, on the supramolecular structures generated by a library of (3,4,5)nG1-3-PBI with n = 14-4. For n = 11-8, the kinetically controlled self-assembly from low temperature changes in a thermodynamically controlled process, while the orthorhombic columnar array for n = 9 and 8 transforms from the thermodynamic product into the kinetic product. The new thermodynamic product at low temperature for n = 9, 8 is a self-repaired helical column with an intra- and intertetramer distance of 3.5 ? forming a 3D monoclinic periodic array via a kinetically controlled self-assembly process. The complex dynamic process leading to this reorganization was elucidated by solid-state NMR and X-ray diffraction. This discovery is important for the field of self-assembly and for the molecular design of supramolecular electronics and solar cell.  相似文献   

7.
8.
First- and second-generation dendronized polymethacrylates PG1 and PG2 carrying chiral 4-aminoproline-based dendrons were obtained on the half-gram scale in high molar masses (PG1: M(n)=5 x 10(6) g mol(-1), PG2: M(n)=1x10(6) g mol(-1)) by spontaneous (radical) polymerization of the corresponding vinyl macromonomers. NMR spectroscopic studies on PG2 together with its unprecedented high glass transition temperature (T(g)>200 degrees C, decomp) and structural parameters provided by atomistic MD simulations show this polymer to be rather rigid. Optical rotation and CD measurements revealed that PG2 adopts a helical conformation that remains unchanged over wide ranges of temperature and solvent polarity. It is also retained when the polymer is deprotected (and thus positively charged, de-PG2) at its terminal amino groups, by which the mass and steric demand of the dendrons is reduced by roughly 50 %. Molecular dynamics simulations on models of PG2 reveal its helical conformation to be right-handed, irrespective of backbone tacticity, and initial results also indicate that de-PG2 retains the right-handedness.  相似文献   

9.
It is the purpose of this paper to establish a bottom-up multiscale approach for dendronized polymers. Based on our understanding of the phenomenology of an atomistic model for this class of polymers, we introduce a "Janus chain" (JC) model which adds a vectorial degree of freedom (Janus vector)--related to the sectorial amphiphilicity--to each segment of the linear backbone of a (classical) uncharged, semiflexible, and multibead chain representation of a polymer. The JC features induced polymeric curvature and ultimately triggers complexation. JC parameters related to the topology and chemical details are obtained from the atomistic level. Available experimental observations including the formation of superstructures and double helical conformations are well reproduced by the JC model. JC is efficiently solved via Brownian dynamics simulation and can be seen as a member of a universality class which is one (two) level(s) above the magnetic (semiflexible) chain model. It therefore should allow to model not only dendronized polymers but also structures belonging to the same class-exhibiting induced (or spontaneous) curvature--such as single stranded DNA and actin filaments.  相似文献   

10.
11.
Polyacrylonitrile (PAN) is soluble at room temperature in some ionic aqueous media and in many polar organic liquids such as dimethyl sulfoxide, but the polymer will not crystallize from these solvents. It is known, however, that PAN will from single crystals from dilute propylene carbonate (PC) solutions. It was found that on cooling concentrated PAN-PC solutions, thermoreversible gels were formed. The gels showed x-ray diffraction peaks and calorimetry indicated first-order dissolution endotherms and crystallization exotherms. Thus, on cooling, crystallization of the polymer from this solvent was identified as the cause for gelation of concentrated solutions. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
13.
Polyphenylacetylenes were prepared using ferric acetylacetonate and (i-Bu)2AlH, RhCl[(C6H5)3P]3 and thermal initiation. Color, infrared spectra, softening temperatures, ultraviolet fluorescence, solubility, and crystallinity are described. A method is presented for assigning to these three macromolecular species predominantly cis, trans, and cistrans copolymer structures, respectively. The dominantly cis polymer is believed to form in a transoid conformation which can easily be transformed to a more helical arrangement which exhibits a degree of crystallinity. Pyridine promotes the isomerization of cis to trans structure. The rhodium phosphine is thought to effect chain growth by repeated additions of the acetylenic C? H of monomer across a terminal triple bond. Phenylacetylene thus behaves as a bifunctional molecule in this system. Color, polymer conformation, and crystallinity appear to be strongly interrelated.  相似文献   

14.
Structural and retrostructural analysis of chiral, nonracemic ( poly [(3,4,5)dm8G1‐1EN] ), and achiral ( poly[(3,4,5)12G1‐1EN] ) poly(1‐naphthylacetylene)s demonstrates new design principles for helical dendronized polyarylacetylenes. The oblate cylindrical dendronized polymers self‐organize in a c2mm centered rectangular columnar (Φr‐c) lattice. An all cis‐polyene backbone microstructure with very high cisoid character is introduced to rationalize features from small‐ and wide‐angle X‐ray diffraction experiments. More compact helical conformations are ideal for efficient communication or amplification of chirality over long distances. Peripheral chiral tails select a preferred helical screw sense of the polyene backbone. In solution, the preferred helical conformation persists over a wide temperature range. In bulk, the naphthyl moiety facilitates a longer correlation length for helical order compared to an analogous minidendritic poly(phenylacetylene). These attributes suggest that the naphthyl moiety may be better suited for expressing helical chirality in monolayer domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4974–4987, 2007  相似文献   

15.
This paper theoretically studies thermoreversible gelation driven by aggregation of helices formed on the polymer chains. Two fundamentally different cases of (i) multiple association of single helices and (ii) association by multiple helices with multiplicity k (such as double helices (k=2), triple helices (k=3), etc.) are treated on the basis of different equations. The helix length distribution on a polymer chain (or assemble of chains for multiple helices) is derived as a function of polymer concentration and temperature. Theoretical calculation of the total helix content in the solution is compared with experimental data of optical rotation in iota-carrageenan solutions at different polymer concentrations. It is shown that at low temperature there is a sharp transition from network to bundle state (pair, triplet, etc.). To confirm such a network/pairing transition, we carried out Monte Carlo simulation of polymer solution in which hydrogen-bonded zipper-like cross-links are formed.  相似文献   

16.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Thermoreversible gelation of polymers driven by the coil-to-helix transition in chain conformation is theoretically studied. For pairwise association of single helices, there are three fundamental types of self-assemblies as a result of competition between helix growth and helix association: Type I network (random coils connected by paired short helices), Type II network (helices connected by short random coils) and pairing (pairs of long helices without branching). Two distinct phase diagrams showing sol/gel transition and coil/helix transition are derived for weak and strong association.  相似文献   

18.
19.
20.
Thermoreversible crosslinking of polyelectrolyte chains via short-range attractions such as hydrogen bonding induced by uncharged or charged particles is studied within the Flory model of ideal association. Electrostatic interactions between the charges at different linking fractions are taken into account by using a generalized random phase approximation approach which includes the network connectivity. We find that at certain concentration of linking agents an infinitely large polymer network is formed. We calculate the structural gelation lines for linkers of different charges and functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号