首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work considers the influence of the gravitational field produced by a charged and rotating black hole (Kerr–Newman spacetime) on a charged massive scalar field. We obtain exact solutions of both angular and radial parts of the Klein–Gordon equation in this spacetime, which are given in terms of the confluent Heun functions. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of charged massive scalar particles.  相似文献   

2.
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.  相似文献   

3.
Previously we have investigated the cosmic wiggly strings in (3 + 1)-dimensional Schwarzschild, Reissner–Nordström and Kerr black holes. As an extension the solutions in (3 + 1)-dimensional axially symmetric charged rotating black hole are investigated. The solutions for the wiggly string exhibit open strings lying in the radial direction in the equatorial plane outside the horizon.  相似文献   

4.
In this paper we investigate the scattering of massless Dirac wave from several different black hole spacetimes (i.e. the Schwarzschild black hole, the RN extremal black hole, the Schwarzschild de Sitter black hole, and the extremal Schwarzschild de Sitter black hole) which are influenced by the cosmic string, respectively. All these cases show us that the total absorption cross sections oscillate around the geometric-optical limit and decrease with linear mass density μ of the cosmic string. All of the total scattering cross sections exhibit that the main scattering angle becomes narrower for the high partial frequency wave. Due to the influence of cosmic string, the glory peak becomes wider for larger values of linear mass density μ of the cosmic string.  相似文献   

5.
In this Letter, we study the equation of circular loops with time-dependent tension in the BTZ black hole background. We obtain various cases where cosmic string loops finally collapse to form black holes. Also, we study effect of the BTZ black hole mass and angular momentum on the evolution of cosmic string loops. We find the critical values of initial radii as a limit for the cosmic string loops collapsing to form black holes.  相似文献   

6.
Primordial black hole formation by cosmic string collapses is reconsidered in the case where the winding number of the string is larger than unity. The line energy density of a multiple winding string becomes greater than that of a single winding string so that the probability of black hole formation by string collapse during loop oscillation would be strongly enhanced. Moreover, this probability could be affected by changes in gravity theory due to large extra dimensions based on the brane universe model. In addition, a wider class of strings which are stable compared to conventional cosmic strings can contribute to such a scenario. Although the production of the multiple winding defect is suppressed and its number density should be small, the enhancement of black hole formation by the increased energy density may provide a large number of evaporating black holes in the present universe which gives more stringent constraints on the string model compared to the ordinary string scenario.  相似文献   

7.
The principal focus of this paper is to study the strong field gravitational lensing in a magnetic charged Reissner-Nordstr?m black hole based on the method of cosmic string. We obtain the new coefficients including the tension of the cosmic strings, the strong field deflection limit coefficients, the deflection angle and the magnification, and obtain the relationship between the cosmic string parameter and the new coefficients. The result shows that the cosmic strings have some important effect on the gravitational lensing in a black hole when they pierce it.  相似文献   

8.
In this Letter the equation of circular loops of cosmic string with periodic tension is investigated in the Minkowski spacetime and Robertson–Walker universe respectively. We find that the cosmic string loops possessing this kind of time-varying tension will evolve to oscillate instead of collapsing to form a black hole if their initial radii are not small enough.  相似文献   

9.
In this work the equation of circular loops of cosmic string possessing time-dependent tension is studied in the de Sitter spacetime. We find that the cosmic string loops with initial radius r(t 0)>0.707L, L de Sitter radius, should not collapse to form a black hole. It is also found that in the case of r(t 0)<0.707L a loop of cosmic string whose tension depends on some power of cosmic time can not become a black hole if the power is lower than a critical value which is associated with the initial size of the loop. Our research gives rise to some important corrections to the conclusion in the case of loops of cosmic string with constant tension in the same background.  相似文献   

10.
In spacetimes with compact dimensions, there exist several black object solutions including the black hole and the black string. They may become unstable depending on their relative size and the length scales in the compact dimensions. The transition between these solutions raises puzzles and addresses fundamental questions such as topology change, uniquenesses, and cosmic censorship. Here, we consider black strings wrapped over the compact circle of a d-dimensional cylindrical spacetime. We construct static nonuniform strings around the marginally stable uniform string. First, we compute the instability mass for a large range of dimensions and find that it follows an exponential law gamma(d), where gamma<1 is a constant. Then we determine that there is a critical dimension, d(*)=13, such that for dd(*) it is, surprisingly, of higher order.  相似文献   

11.
《Nuclear Physics B》1996,475(3):645-676
We show that polarization-dependent string-string scattering provides new evidence for the identification of the Dabholkar-Harvey (DH) string solution with the heterotic string itself. First, we construct excited versions of the DH solution which carry arbitrary left-moving waves yet are annihilated by half the supersymmetries. These solutions correspond in a natural way to Bogomolny-bound-saturating excitations of the ground state of the heterotic string. When the excited string solutions are compactified to four dimensions, they reduce to Sen's family of extremal black hole solutions of the toroidally compactified heterotic string. We then study the large impact parameter scattering of two such string solutions. We develop methods which go beyond the metric on moduli space approximation and allow us to read off the subleading polarization-dependent scattering amplitudes. We find perfect agreement with heterotic string tree amplitude predictions for the scattering of corresponding string states. Taken together, these results clearly identify the string states responsible for Sen's extremal black hole entropy. We end with a brief discussion of implications for the black hole information problem.  相似文献   

12.
In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.  相似文献   

13.
In this paper the generalized equations for spinning space are investigated and the constants of motion are derived in terms of the solutions of these equations. We study the geodesic motion of the pseudo-classical spinning particles in the spacetime produced by an idealized cosmic string and the non-extreme stationary axisymmetric black hole spacetime. The bound state orbits in a plane are discussed. We also show, for a conical spacetime and the Kerr spacetime, that the geodesic motion of spinning particles is different.  相似文献   

14.
We study the motion of current carrying charged string loops in the Reissner–Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.  相似文献   

15.
In this paper, we extend Parikh's recent work to two kinds of the black holes whose ADM mass is no longer identical to its mass parameter, each with a topological defect, one being a global monopole black hole and another a cosmic string black hole. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The results are consistent with an underlying unitary theory.  相似文献   

16.
We study the equilibrium configurations of a cosmic string described by the Nambu action in the NUT-Kerr-Newman spacetime which includes as special cases the Kerr-Newman black hole spacetime as well as the NUT spacetime which is considered as a cosmological model. In this study it is interesting to note that one can obtain parallel results for the Kerr-Newman black hole as well as the NUT spacetime.  相似文献   

17.
We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling g s , the situation can tentatively be interpreted as classical indication on the black hole—string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of the theory with the S-duality symmetric dilaton function as required by the heterotic string theory. The article is published in the original.  相似文献   

18.
Chargeless massive scalar fields are studied in the spacetime of Born–Infeld dilaton black holes (BIDBHs). We first separate the massive covariant Klein–Gordon equation into radial and angular parts and obtain the exact solution of the radial equation in terms of the confluent Heun functions. Using the obtained radial solution, we show how one gets the exact quasinormal modes for some particular cases. We also solve the Klein–Gordon equation solution in the spacetime of a BIDBHs with a cosmic string in which we point out the effect of the conical deficit on the BIDBHs. The analytical solutions of the radial and angular parts are obtained in terms of the confluent Heun functions. Finally, we study the quantization of the BIDBH. While doing this, we also discuss the Hawking radiation in terms of the effective temperature.  相似文献   

19.
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert action produces special dilation potential in the four dimensional effective string action. Cosmological scenarios implemented by our solutions are discussed.  相似文献   

20.
This study explores the scalar and Dirac quasinormal modes pertaining to a class of black hole solutions in the scalar-tensor-Gauss-Bonnet theory. The black hole metrics in question are novel analytic solutions recently derived in the extended version of the theory, which effectively follows at the level of the action of string theory. Owing to the existence of a nonlinear electromagnetic field, the black hole solution possesses a nonvanishing magnetic charge. In particular, the metric is capable of describing black holes with distinct characteristics by assuming different values of the ADM mass and the magnetic charge. This study investigates the scalar and Dirac perturbations in these black hole spacetimes; in particular, we focus on two different types of solutions, based on distinct horizon structures. The properties of the complex frequencies of the obtained dissipative oscillations are investigated, and the stability of the metric is subsequently addressed. We also elaborate on the possible implications of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号