首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Si1−xGex thin layer is fabricated by two-step Ge ion implantation into (0 0 1) silicon. The embedded SiGe nanoclusters are produced in the Si1−xGex layer upon further annealing. The number and size of the nanoclusters changed due to the Ge diffusion during annealing. Micro defects around the nanoclusters are illustrated. It is revealed that the change of Si-Si phonon mode is causing by the nanoclusters and micro defects.  相似文献   

2.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

3.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

4.
The hydrogen content in a-Si1−xGex:H thin films is an important factor deciding the density and the optical band gap. We measured the elemental depth profiles of hydrogen together with Si and Ge by elastic recoil detection analysis (ERDA) combined with Rutherford backscattering (RBS) using MeV He2+ ions. In order to determine the hydrogen depth profiles precisely, the energy- and angle-dependent recoil cross-sections were measured in advance for the standard sample of a CH3+-implanted Si substrate. The cross-sections obtained here are reproduced well by a simple expression based on the partial wave analysis assuming a square well potential (width: r0 = 2.67 × 10−13 cm, depth: V0 = −36.9 MeV) within 1%. For the a-Si1−xGex:H films whose elemental compositions were determined by ERDA/RBS, we measured the secondary ions yields of HCs2+, SiCs2+, H, Si and Ge as a function of Ge concentration x. As a result, it is found that the useful yield ratios of HCs2+/SiCs2+, H/Si and Ge/Si are almost constant and thus the elemental depth profiles of the a-Si1−xGex:H films can be also determined by secondary ion mass spectrometry (SIMS) within 10% free from a matrix effect.  相似文献   

5.
Ge1−xCx films deposited by using a medium frequency magnetron sputtering technique (MFMST) were analyzed with X-ray photoelectron and Raman spectroscopy. The deposited Ge1−xCx films consist of C, Ge, GeC and GeOy. The GeC content in the Ge1−xCx films linearly decreases, and the C content linearly increases with increasing deposition temperature from 150 to 350 °C. The GeC content decreases from 11.6% at a substrate bias of 250 V to a lowest value of 9.6% at 350 V, then increases again to 10.4% at 450 V. While the C content increases from 49.0% at the bias of 250 V to a largest value of 58.0% at 350 V and then maintains this level at 450 V. It is found that selecting a bias parameter seems more effective than deposition temperature if we want to obtain a higher content of GeC in the deposited films. In addition, a new method is presented in this paper to estimate the changes of GeC content in the Ge1−xCx films by observing the shifts of Ge-Ge LO phonon peak in Raman spectra for the Ge1−xCx films. The related mechanism is also discussed in this paper.  相似文献   

6.
Gd5(SixGe1−x)4, known for its giant magnetocaloric effect, also exhibits a colossal strain of the order of 10,000 ppm for a single crystal near its coupled first-order magnetic-structural phase transition, which occurs near room temperature for the compositions 0.41≤x≤0.575. Such colossal strain can be utilised for both magnetic sensor and actuator applications. In this study, various measurements have been carried out on strain as a function of magnetic field strength and as a function of temperature on single crystal Gd5Si2Ge2 (x=0.5), and polycrystalline Gd5Si1.95Ge2.05 (x=0.487) and Gd5Si2.09Ge1.91 (x=0.52). Additionally a giant magnetostriction/thermally induced strain of the order of 1800 ppm in polycrystalline Gd5Si2.09Ge1.91 was observed at its first order phase transition on varying temperature using a Peltier cell without the use of bulky equipment such as cryostat or superconducting magnet.  相似文献   

7.
The optical properties and the deep levels in bulk Si1−xMnx formed by using an implantation and annealing method were investigated. Transmission electron microscopy, X-ray diffraction, and Hall-effect measurements showed that the annealed bulk Si1−xMnx samples were p-type crystalline semiconductors. The photoluminescence spectra for the annealed bulk Si1−xMnx material showed luminescence peaks corresponding to excitons bound to neutral acceptors and related to dislocations due to the existence of Mn impurities. Deep-level transient spectroscopy results for the annealed bulk Si1−xMnx showed deep levels related to the interstitial and substitutial sites of the Mn+ ions. These results can help improve understanding of the optical properties and the deep levels in annealed bulk Si1−xMnx material.  相似文献   

8.
D. Shreiber 《Surface science》2006,600(19):4584-4590
The phenomenon of the influence of the size of a material on its properties has been predicted theoretically and was confirmed for many materials experimentally by many researchers. It is a purpose of this paper to increase understanding of the influence of size on properties for silicon, germanium and alloy silicon-germanium nanoparticles. The relationships between lattice parameter and inverse particle radius had been investigated. The data obtained from the experiments show an unpredicted result that the lattice parameter of the SixGe1−x nanoparticle expands by up to 1.5% when the size of the particle decreases to 7 nm. A calibration technique for a higher precision measurement of the lattice parameter is presented. The particles under investigation were deposited on an amorphous carbon substrate in order to prevent the influence of the misfit between deposit and crystalline substrate on the particle’s behavior.  相似文献   

9.
We have grown MnxGe1−x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07×1019 cm−3 while the MnxGe1−x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature.  相似文献   

10.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

11.
We report on the structural, magnetic and electronic transport properties of thin MnxGe1−x films grown at 350 °C. Isolated Mn5Ge3 nanoclusters, about 100 nm in size, were formed at the top surface of the film, dominating the magnetic properties of the whole film. Electronic transport properties show Mn doping effect indicating the presence of substitutional Mn ions dispersed in the Ge host, contributing to the formation of a MnxGe1−x diluted phase. Electrical behaviour indicates a saturation effect with the raise of the nominal Mn concentration in the film, above x ≅ 0.03.  相似文献   

12.
The structure and magnetic properties of Nd1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Nd leads to a linear decrease in the lattice constants and the unit cell volume, and the magnetic interactions in the Mn sublattice cross over from a ferromagnetic character to an antiferromagnetic one. A typical SmMn2Ge2-like behavior is observed for x=0.6 and 0.8. The results are collected in a phase diagram.  相似文献   

13.
We report the modification of molecular beam epitaxy grown strain-relaxed single crystalline Si1−xGex layers for x=0.5 and 0.7 as a result of irradiation with 100 MeV Au ions at 80 K. The samples were structurally characterized by Rutherford backscattering spectrometry/channeling, transmission electron microscopy (TEM) and high-resolution X-ray diffraction before and after irradiation with fluences of 5×1010, 1×1011 and 1×1012 ions/cm2, respectively. No track formation was detected in both the samples from TEM studies and finally, the crystalline to amorphous phase transformation at 1×1012 ions/cm2 was examined to be higher for Si0.3Ge0.7 layers compared to Si0.5Ge0.5 layers.  相似文献   

14.
We address the growth mechanism of Ge quantum dots (QDs) on C-alloyed strained Si1−xGex layers by in situ reflection high-energy electron-diffraction (RHEED). We show that C-induced growth on a Si-rich surface leads to a high density (about 1011 cm−2) of small dome-shaped islands. On surfaces up to ≈65% richer in Ge we observe a decrease of the dot density by two orders of magnitude, which is associated to the increase of the adatom diffusion. Based on quantitative RHEED analysis, the islands are believed to grow in a Volmer-Weber mode even though their spotty electron transmission pattern is not detectable in the initial stages of growth due to the reduced size of the three-dimensional nucleation islands.  相似文献   

15.
The positive secondary ion yields of B+ (dopant), Si+ and Ge+ were measured for Si1−xGex (0 ≤ x ≤ 1) sputtered by 5.5 keV 16O2+ and 18O2+. It is found that the useful yields of Ge+ and B+ suddenly drop by one order of magnitude by varying the elemental composition x from 0.9 to 1 (pure Ge). In order to clarify the role of oxygen located near surface regions, we determined the depth profiles of 18O by nuclear resonant reaction analysis (NRA: 18O(p,α)15N) and medium energy ion scattering (MEIS) spectrometry. Based on the useful yields of B+, Si+ and Ge+ dependent on x together with the elemental depth profiles determined by NRA and MEIS, we propose a probable surface structure formed by 5.5 keV O2+ irradiation.  相似文献   

16.
We report the structure and magnetic properties of Pr1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Pr leads to a linear decrease in the lattice constants and the unit cell volume. The samples with x=0 and x=0.8 have spin reorientation temperature. The results are collected in a phase diagram.  相似文献   

17.
Si1−xMnx diluted magnetic semiconductor (DMS) bulks were formed by using an implantation and annealing method. Energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), and double-crystal rocking X-ray diffraction (DCRXD) measurements showed that the grown materials were Si1−xMnx crystalline bulks. Hall effect measurements showed that annealed Si1−xMnx bulks were p-type semiconductors. The magnetization curve as a function of the magnetic field clearly showed that the ferromagnetism in the annealed Si1−xMnx bulks originated from the interaction between interstitial and substitutional Mn+ ions, which was confirmed by the DCRXD measurements. The magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature was approximately 75 K. The present results can help to improve understanding of the formation mechanism of ferromagnetism in Si1−xMnx DMS bulks.  相似文献   

18.
Amorphous SixC1−x films possess the potential to improve wear performance in humid atmospheres and at higher temperatures. But some experimental work on the films showed that silicon contents greatly influenced their microstructures and mechanical properties. Therefore, simulations of molecular dynamics were carried out to predict structures of the SixC1−x films at different silicon contents. The results show that the sp3/sp2 ratio of all the films increases, but the stiffness of the films is decreasing with an increase in silicon contents. Moreover, silicon atoms are almost surrounded by carbon atoms, which is in agreement with the experiments.  相似文献   

19.
The electronic and optical properties of the direct band gap alloys SnxGe1 − x (x = 0.000, 0.042, 0.083, 0.125, 0.167, and 0.208) have been studied by using the generalized gradient approximation in the framework of the density functional theory. The calculated lattice constants obey Vergard's law. The band structures show that the alloys have direct band gap and the band gaps can be tunable by Sn contents. The optical properties of the SnxGe1 − x alloys with the physical quantities such as the complex dielectric function, the energy-loss function and the static dielectric constant, respectively, are shown to support the potential application of infrared devices in the future.  相似文献   

20.
Using a 100 MeV Au beam, the surface roughening kinetics of relaxed Si1−xGex alloy films for x=0.5 and 0.7 are studied by means of ex-situ atomic force microscopy (AFM). Swift heavy ion (SHI) irradiation induced surface roughening behavior is demonstrated using the trend in variation of β as a function of fluence when the data are analyzed in terms of the Edwards-Wilkinson (EW) model. By employing the EW model, the observed surface roughening is explained on the basis of the competition between SHI induced sputtering and smoothening through redeposition of the sputtered atoms. The composition dependent variation of surface morphology with increasing fluence is discussed in the light of the strain distribution along the sample surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号