首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is considerable controversy surrounding the nature of the paramagnetic to ferromagnetic phase transition in La0.7Ca0.3MnO3. We have used transmission electron microscopy to perform micromagnetic imaging in order to determine whether the phase change is first or second order. On warming through the transition point, the ferromagnetic phase retreats from the sample surface as it is replaced by the paramagnetic phase. This coexistence of ferromagnetic and paramagnetic phases indicates a primarily first-order transition. However, there is also a continuous loss of magnetization which precedes the phase transition. We compare this with the ferromagnetic transition in nickel which displays a purely continuous phase change. We discuss the accuracy and range of applicability of the micromagnetic imaging techniques of electron holography and Fresnel imaging which were used in this investigation.  相似文献   

2.
We consider a mean-field continuum model of classical particles in R d with Ising or Heisenberg spins. The interaction has two ingredients, a ferromagnetic spin coupling and a spin-independent molecular force. We show that a feedback between these forces gives rise to a first-order phase transition with simultaneous jumps of particle density and magnetization per particle, either at the threshold of ferromagnetic order or within the ferromagnetic region. If the direct particle interaction alone already implies a phase transition, then the additional spin coupling leads to an even richer phase diagram containing triple (or higher order) points.  相似文献   

3.
We compute the phase diagram of a biased graphene bilayer. The existence of a ferromagnetic phase is discussed with respect to both carrier density and temperature. We find that the ferromagnetic transition is first-order, lowering the value of U relatively to the usual Stoner criterion. We show that in the ferromagnetic phase the two planes have unequal magnetization and that the electronic density is holelike in one plane and electronlike in the other.  相似文献   

4.
We calculate the diamagnetic susceptibility in zero external magnetic field above the phase transition from ferromagnetic phase to phase of coexistence of ferromagnetic order and unconventional superconductivity. For this aim we use generalized Ginzburg-Landau free energy of unconventional ferromagnetic superconductor with spin-triplet electron pairing. A possible application of the result to some intermetallic compounds is briefly discussed.  相似文献   

5.
We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.  相似文献   

6.
There is considerable controversy surrounding the nature of the paramagnetic to ferromagnetic phase transition in La(0.7)Ca(0.3)MnO3. We have used transmission electron microscopy to determine whether the phase transition is first or second order. On warming through the transition point, the ferromagnetic phase retreats from the sample surface as it is replaced by the paramagnetic phase. This coexistence of ferromagnetic and paramagnetic phases indicates a primarily first order transition. However, there is also continuous loss of magnetization which precedes the phase transition. We compare this with the phase transition in nickel, an archetypal second order ferromagnet.  相似文献   

7.
A Bethe-Peierls treatment to dilution in frustrated magnets and spin liquids is given. A spin glass phase is present at low temperatures and close to the percolation point as soon as frustration takes a finite value in the dilute magnet model; the spin glass phase is reentrant inside the ferromagnetic phase. An extension of the model is given, in which the spin glass/ferromagnet phase boundary is shown not to reenter inside the ferromagnetic phase asymptotically close to the tricritical point whereas it has a turning point at lower temperatures. We conjecture similar phase diagrams to exist in finite dimensional models not constraint by a Nishimori's line. We increase frustration to study the effect of dilution in a spin liquid state. This provides a “minimal” ordering by disorder from an Ising paramagnet to an Ising spin glass. Received 9 April 1999 and Received in final form 27 September 1999  相似文献   

8.
In a local Fermi liquid (LFL), we show that there is a line of weak first-order phase transitions between the ferromagnetic and paramagnetic phases due to purely quantum fluctuations. We predict that an instability towards superconductivity is only possible in the ferromagnetic state. At T?=?0 we find a point on the phase diagram where all three phases meet and we call this a quantum triple point (QTP). A simple application of the Gibbs phase rule shows that only these three phases can meet at the QTP. This provides a natural explanation of the absence of superconductivity at this point coming from the paramagnetic side of the phase diagram, as observed in the recently discovered ferromagnetic superconductor, UGe 2.  相似文献   

9.
《Physica A》1996,231(4):397-407
We consider an enlarged phase space of the ±J spin glass which includes the dilute Ising model and the frustrated system. The three orthogonal axes in this space are: (i) The fraction of ferro- to antiferro-magnetic bonds, p; (ii) the ratio of the strengths of the antiferro- to ferromagnetic interacions, q; and (iii) the temperature, T. Within this phase space we observe extended regions of the low-temperature spin-glass phase which is characterized by a unique distribution of the local-order parameter. We observe reentrant phase transitions: for fixed p and q with varying T the distribution of the local order parameter shows paramagnetic, ferromagnetic and then spin-glass phases; for fixed p and T and varying q the distribution shows ferromagnetic to paramagnetic and then spin-glass phases.  相似文献   

10.
We have measured transport and magnetic properties of polycrystalline La0.5Ca0.5Mn0.95Fe0.05O3, a phase separated manganite with ferromagnetic ground state. Cooling rate dependences and time relaxation were found; the coexistence of ferromagnetic and charge ordered regions determines a dynamics which influences physical properties. We show that a dynamical contribution to the resistivity can account for the observed cooling rate dependence and ageing effects on this phase separated manganite.  相似文献   

11.

Magnetic pressure-temperature phase diagram of La 1.4 Sr 1.6 Mn 2 O 7 layered manganese oxide has been studied by neutron diffraction. Three phases have been found in this compound at ambient pressure: high-temperature phase with quasi two-dimensional correlations of the magnetic moments on Mn sites and two low-temperature phases with long-range order - antiferromagnetic and ferromagnetic. Under hydrostatic pressure the antiferromagnetic phase is favoured with respect to the two-dimensional and long-range ferromagnetic phases. The magnetic phase with two-dimensional correlations is thus suppressed by the antiferromagnetic phase with long-range order. We discuss this result in terms of the pressure-induced electron transfer and compare our conclusions with predictions given by theoretical calculations.  相似文献   

12.
The simplest model for itinerant ferromagnetism, the Stoner model, has so far eludedexperimental observation in repulsive ultracold fermions due to rapid three-bodyrecombination at large scattering lengths. Here we show that a ferromagnetic phase can bestabilised by imposing a moderate optical lattice. The reduced kinetic energy drop uponformation of a polarized phase in an optical lattice extends the ferromagnetic phase tosmaller scattering lengths where three-body recombination is small enough to permitexperimental detection of the phase. We also show, using time dependent density functionaltheory, that in such a setup ferromagnetic domains emerge rapidly from a paramagneticinitial state.  相似文献   

13.
Using ground state computations, we study the transition from a spin glass to a ferromagnet in 3D spin glasses when changing the mean value of the spin-spin interaction. We find good evidence for replica symmetry breaking up until the critical value where ferromagnetic ordering sets in, and no ferromagnetic spin glass phase. This phase diagram is in conflict with the droplet/scaling and mean field theories of spin glasses. We also find that the exponents of the second order ferromagnetic transition do not depend on the microscopic Hamiltonian, suggesting universality of this transition.  相似文献   

14.
We present Monte Carlo simulations of the spanning-forest model (q-->0 limit of the ferromagnetic Potts model) in spatial dimensions d=3, 4, 5. We show that, in contrast to the two-dimensional case, the model has a ferromagnetic second-order phase transition at a finite positive value w(c). We present numerical estimates of w(c) and of the thermal and magnetic critical exponents. We conjecture that the upper critical dimension is 6.  相似文献   

15.
The alpha-beta magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more importantly, for the stabilization of the ferromagnetic alpha phase at a higher temperature than in the bulk. We explain the premature appearance of the beta phase at 275 K and the persistence of the ferromagnetic alpha phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.  相似文献   

16.
Spin glass—ferromagnetic systems such as AuFe alloys having both the ferromagnetic and RKKY interactions are studied on the basis of a mean-random-field approximation. We obtain the phase diagram of the systems in terms of the temperature and the magnetic impurity concentration. The results roughly explain the magnetism of AuFe type alloys.  相似文献   

17.
We present an improved analysis of the phase transitions in spin-triplet ferromagnetic superconductors within Ginzburg–Landau theory. We put special emphasis on the phase transitions from normal phase to the mixed phase of coexistence of ferromagnetism and unconventional superconductivity. We present a detailed analysis of the different phases that can occur and analyze the question under which conditions the phase transitions from normal phase to the mixed phase of coexistence of ferromagnetism and unconventional superconductivity are possible when compared to other phase transitions. The conditions for the phase transitions and the stability conditions are calculated. On the basis of this model, it is argued that the transition from normal phase to the mixed phase of coexistence is always of first order. It was observed from the theoretical calculations that the transition from the ferromagnetic phase to the coexistence phase can cross over from the first to the second order at the tricritical point.  相似文献   

18.
We investigate the incompletely saturated ferromagnetic phase which occurs at strong-coupling in the partially-filled one-dimensional (1D) Kondo lattice model. The double-exchange interaction responsible for the ferromagnetic ordering is absent in dilute Kondo systems, and is a missing element in nearly all theoretical treatments of the model. We discuss how: 1) double-exchange arises in the system, even though the Kondo coupling is antiferromagnetic, and show that at strong-coupling it favors an alignment of the spins of unpaired localized moments; and 2) how this determines the ground-state phase diagram, and properties of the localized moments.  相似文献   

19.
Compressed Pr0.5Ca0.5MnO3 films (250 nm) deposited on LaAlO3 have been studied by Electron Spin Resonance technique under high frequency and high magnetic field. We show evidences for the presence of a ferromagnetic phase (FM) embedded in the charge-order phase (CO), in form of thin layers which size depends on the strength and orientation of the magnetic field (parallel or perpendicular to the substrate plane). This FM phase presents an easy plane magnetic anisotropy with an anisotropy constant 100 times bigger than typical bulk values. When the magnetic field is applied perpendicular to the substrate plane, the FM phase is strongly coupled to the CO phase whereas for the parallel orientation it keeps an independent ferromagnetic resonance even when the CO phase becomes antiferromagnetic.  相似文献   

20.
Raman scattering experiments have been carried out on single crystals of Nd0.5Sr0.5MnO3 as a function of temperature in the range of 320–50 K, covering the paramagnetic insulator-ferromagnetic metal transition at 250 K and the charge-ordering antiferromagnetic transition at 150 K. The diffusive electronic Raman scattering response is seen in the paramagnetic phase which continue to exist even in the ferromagnetic phase, eventually disappearing below 150 K. We understand the existence of diffusive response in the ferromagnetic phase to the coexistence of the different electronic phases. The frequency and linewidth of the phonons across the transitions show significant changes, which cannot be accounted for only by anharmonic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号