首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rabi coupling between two components of Bose-Einstein condensates is used to controllably change ordinary dark soliton into dynamic vector dark soliton or ordinary vector dark soliton. When all inter- and intraspecies interactions are equal, the dynamic vector dark soliton is exactly constructed by two sub-dark-solitons, which oscillate with the same velocity and periodically convert with each other. When the interspecies interactions deviate from the intraspecies ones, the whole soliton can maintain its essential shape, but the sub-dark-soliton becomes inexact or is broken. This study indicates that the Rabi coupling can be used to obtain various vector dark solitons.  相似文献   

2.
We investigate the dynamics of bright matter wave solitons in spin-1 Bose–Einstein condensates with time modulated nonlinearities. We obtain soliton solutions of an integrable autonomous three-coupled Gross–Pitaevskii (3-GP) equations using Hirota?s method involving a non-standard bilinearization. The similarity transformations are developed to construct the soliton solutions of non-autonomous 3-GP system. The non-autonomous solitons admit different density profiles. An interesting phenomenon of soliton compression is identified for kink-like nonlinearity coefficient with Hermite–Gaussian-like potential strength. Our study shows that these non-autonomous solitons undergo non-trivial collisions involving condensate switching.  相似文献   

3.
We review our recent theoretical advances in the dynamics of Bose-Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross-Pitaevskii equations are developed to study the nonlinear dynamics of Bose-Einstein condensates. Analytically, we present the integrable conditions for the Gross-Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose-Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose-Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose-Einstein condensates.  相似文献   

4.
This paper presents a family of soliton solutions of the one-dimensional nonlinear Schrdinger equation which describes the dynamics of the dark solitons in Bose-Einstein condensates with an arbitrary x-dependent external potential.The obtained results show that the external potential has an important effect on the dark soliton dynamical characteristics of the condensates.The amplitude,width,and velocity of the output soliton are relative to the source position of the external potential.The smaller the amplitude of the soliton is,the narrower its width is,and the slower the soliton propagates.The collision of two dark solitons is nearly elastic.  相似文献   

5.
The existence of a new class of double humped grey and dark solitons in a Kerr nonlinear medium has been predicted in this paper. Following well known variational procedure, the dynamics of the propagating soliton has been converted to a Hamiltonian formulation. A set of ordinary differential equations is then derived, which was subsequently examined to predict the existence of double humped grey and dark solitons. Linear stability analysis, numerical appreciation and phase plane dynamics show that these solitons are stable.  相似文献   

6.
We extend our recent results [O.A. Egorov et al. Phys. Rev. Lett. 102, 153904 (2009)] on half-light–half-matter polariton solitons in planar semiconductor microcavities operating in the strong coupling regime. We initiate discussion on the structure of the solitons in the momentum space and its link to the instability of the upper branch of the polariton bistability loop. Numerical results showing the soliton excitation by a seed pulse are presented.  相似文献   

7.
We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.  相似文献   

8.
王强  文林  李再东 《中国物理 B》2012,21(8):80501-080501
We consider two coupled Gross-Pitaevskii equations describing a two-component Bose-Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential,and investigate the dynamics of vector solitons.By using a direct method,we construct a novel family of vector soliton solutions,which are the linear combination between dark and bright solitons in each component.Our results show that due to the superposition between dark and bright solitons,such vector solitons possess many novel and interesting properties.The dynamics of vector solitons can be controlled by the Feshbach resonance technique,and the vector solitons can keep the dynamic stability against the variation of the scattering length.  相似文献   

9.
We present an analytical study on the dynamics of bright and dark solitons in Bose-Einstein condensates with time-varying atomic scattering length in a time-varying external parabolic potential. A set of exact soliton solutions of the one-dimensional Gross-Pitaevskii equation are obtained, including fundamental bright solitons, higher-order bright solitons, and dark solitons. The results show that the soliton's parameters (amplitude, width, and period) can be changed in a controllable manner by changing the scattering length and external potential. This may be helpful to design experiments.  相似文献   

10.
Coupled modified nonlinear Schr?dinger (CMNLS) equations describe the pulse propagation in the picosecond or femtosecond regime of the birefringent optical fibers. A new type of the Lax pair and another hierarchy of the infinitely many conservation laws are derived based on the Wadati-Konno-Ichikawa system. By means of the Hirota method, soliton solutions in the normal dispersion regime are obtained. Parametric regions for the existence of dark and anti-dark vector soliton solutions are given. Asymptotic analysis shows that the collision between two solitons (two anti-dark solitons, two dark solitons, or dark and anti-dark solitons) in each polarization direction is elastic. Moreover, there is no energy transfer between two polarization components of each vector soliton, whether dark or anti-dark vector soliton. In addition, dark and anti-dark solitons can coexist on the same background seen from the collision between the dark and anti-dark solitons in one polarization direction. Our graphical analysis shows that the parameters in the CMNLS equations not only determine the regions for the existence of dark and anti-dark soliton solutions but also control the phase and direction of the propagation of the solitons. Finally, through the linear stability analysis, the modulational instability condition is given.  相似文献   

11.
The dynamics of dark solitons in one-dimensional Bose-Einstein condensates under the nonlinearity and harmonic potential managements is investigated. It is found that at the large particle limit the macroscopic wave function could evolve self-similarly, which provides a time-varying background for the propagation of dark solitons. The approximate dark soliton solution is derived and its center-of-mass motion is predicted analytically.  相似文献   

12.
13.
薛具奎  彭娉 《中国物理》2006,15(6):1149-1153
The ring dark solitons and their head-on collisions in a Bose--Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by the two cylindrical KdV equations in the respective reference frames. By using the extended Poincar\'e--Lighthill--Kuo perturbation method, the analytical phase shifts following the head-on collisions between two ring dark solitary waves are derived. It is shown that the phase shifts decrease with the radial coordinate $r$ according to the $r^{-1/3}$ law and depend on the initial soliton amplitude and radius.  相似文献   

14.
We solve using the similarity transformation method a one-dimensionless driven-dissipative nonlinear Schrödinger equation to explore the dynamics of the rogue wave solitons generated in a polariton fluid. Under resonant excitation, we predict the existence of the bright and the dark-rogue waves solitons by varying the external pump source parameter. By considering, a time periodic polariton–polariton interaction and adjusting its frequency, the rogue wave soliton trains occur in a polariton fluid. In addition we observe that, the amplitude of the pump power is responsible to the formation of a the train of the bright and the dark rogue waves solitons.  相似文献   

15.
李锦茴  李志坚 《中国物理 B》2011,20(10):100501-100501
We first present an analytical solution of the single and double solitions of Bose-Einstein condensates trapped in a double square well potential using the multiple-scale method. Then, we show by numerical calculation that a dark soliton can be transmitted through the square well potential. With increasing depth of the square well potential, the amplitude of the dark soliton becomes larger, and the soliton propagates faster. In particular, we treat the collision behaviour of the condensates trapped in either equal or different depths of the double square well potential. If we regard the double square well potential as the output source of the solitons, the collision locations (position and time) between two dark solitons can be controlled by its depth.  相似文献   

16.
We show the existence of new stationary solutions in the form of domain wall soliton in the nonlinear Schrödinger-Poisson equations describing the dynamics of quantum electron plasmas. It is found that the domain wall soliton exists at strong coupling constant regime and shows a different dynamical behavior in comparison with the previously found dark and gray solitons. The robustness and the conservation of the energy of the domain wall solitons is demonstrated by numerical simulations.  相似文献   

17.
Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons.  相似文献   

18.
宋昌盛  黎菁  宗丰德 《中国物理 B》2012,21(2):20306-020306
An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a time-space periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.  相似文献   

19.
This paper studies chirped optical solitons in nonlinear optical fibers. However, we obtain diverse soliton solutions and new chirped bright and dark solitons, trigonometric function solutions and rational solutions by adopting two formal integration methods. The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method. These results are more general compared to Hadi et al(2018 Optik 172 545–53) and Yakada et al(2019 Optik197 163108).  相似文献   

20.
The effects of collisional damping on high frequency Langmuir wave and low frequency ion-acoustic wave have been investigated. It is found that the governing equations for the waves are a pair of Zakharov equations with a damping term in each equation. By using the treatment which consists of approximate solutions of the balance equations, a set of first order ordinary differential equations have been derived for the solution parameters in order to study the motion of Zakharov solitons in presence of damping. It has been shown that the width of the soliton remains constant throughout the motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号