首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

2.
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.  相似文献   

3.
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.  相似文献   

4.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

5.
We study the electronic band structure, density distribution, and transport of a Bi_2Se_3 nanoribbon. We find that the density distribution of the surface states is dependent on not only the shape and size of the transverse cross section of the nanoribbon, but also the energy of the electron. We demonstrate that a transverse electric field can eliminate the coupling between surface states on the walls of the nanoribbon, remove the gap of the surface states, and restore the quantum spin Hall effects. In addition, we study the spin-dependent transport property of the surface states transmitting from top and bottom surfaces(x-y plane) to the side surfaces(z-x plane) of a Bi_2Se_3 nanoribbon. We find that transverse electric fields can open two surface channels for spin-up and-down Dirac electrons, and then switch off one channel for the spin-up Dirac electron. Our results may provide a simple way for the design of a spin filter based on topological insulator nanostructures.  相似文献   

6.
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltonian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.  相似文献   

7.
One of the most fascinating challenges in Physics is the realization of an electron-based counterpart of quantum optics, which requires the capability to generate and control single electron wave packets. The edge states of quantum spin Hall (QSH) systems, i.e., two-dimensional (2D) topological insulators realized in HgTe/CdTe and InAs/GaSb quantum wells, may turn the tide in the field, as they do not require the magnetic field that limits the implementations based on quantum Hall effect. However, the band structure of these topological states, described by a massless Dirac fermion Hamiltonian, prevents electron photoexcitation via the customary vertical electric dipole transitions of conventional optoelectronics. So far, proposals to overcome this problem are based on magnetic dipole transitions induced via Zeeman coupling by circularly polarised radiation, and are limited by the g-factor. Alternatively, optical transitions can be induced from the edge states to the bulk states, which are not topologically protected though.Here we show that an electric pulse, localized in space and/or time and applied at a QSH edge, can photoexcite electron wavepackets by intra-branch electrical transitions, without invoking the bulk states or the Zeeman coupling. Such wavepackets are spin-polarised and propagate in opposite directions, with a density profile that is independent of the initial equilibrium temperature and that does not exhibit dispersion, as a result of the linearity of the spectrum and of the chiral anomaly characterising massless Dirac electrons. We also investigate the photoexcited energy distribution and show how, under appropriate circumstances, minimal excitations (Levitons) are generated. Furthermore, we show that the presence of a Rashba spin–orbit coupling can be exploited to tailor the shape of photoexcited wavepackets. Possible experimental realizations are also discussed.  相似文献   

8.
In lateral quantum dots, the combined effect of both Dresselhaus and Bychkov-Rashba spin-orbit coupling is equivalent to an effective magnetic field +/- B(SO) which has the opposite sign for s(z)= +/- 1/2 spin electrons. When the external magnetic field is perpendicular to the planar structure, the field B(SO) generates an additional splitting for electron states as compared to the spin splitting in the in-plane field orientation. The anisotropy of spin splitting has been measured and then analyzed in terms of spin-orbit coupling in several AlGaAs/GaAs quantum dots by means of resonant tunneling spectroscopy. From the measured values and sign of the anisotropy we are able to determine the dominating spin-orbit coupling mechanism.  相似文献   

9.
胥建卫  王顺金 《物理学报》2009,58(7):4878-4882
用多体平均场意义下电子的Dirac方程讨论了电子自旋动力学及其相关问题. 在大分量Dirac方程的非相对论展开中讨论了电子自旋动力学的高阶效应,并且在二维情形下得到了包括一阶和二阶Rashba效应的电子自旋动力学哈密顿量,求出了相应的包括二阶Rashba效应的哈密顿量的能量和波函数的本征值解,由此讨论了二阶Rashba效应修正的物理含义和大小. 关键词: 二阶Rashba效应 自旋电子学 Dirac方程 相对论平均场理论  相似文献   

10.
In the cyclotron resonance (CR) spectra of two-dimensional (2D) electrons in InAs quantum wells, the CR line splitting is observed. The splitting is found to be an oscillating function of magnetic field. The oscillations do not correlate with the filling factor. The experimental results are interpreted in terms of the spin-orbit splitting in the presence of a built-in electric field appearing due to the asymmetry of the quantum-well potential. From the splitting of the CR line, the spin-orbit coupling constant αso is determined. The resulting value agrees well with the value obtained for the same sample from the Shubnikov-de Haas oscillations. The role of the resonance interaction of charge carriers in the well with the interface donor states is discussed.  相似文献   

11.
Coherent spin precession of electrons and excitons is observed in charge tunable InP quantum dots under the transverse magnetic field by means of time-resolved Kerr rotation. In a quantum dot doped by one electron, spin precession of the doped electron in the quantum dot starts out of phase with spin precession of the doped electrons in a GaAs substrate just after a trion is formed and persists for more than 2 ns even after the trion recombines. Simultaneously spin precession of a trion (hole) starts. Observation of spin precession of both a doped electron and a trion (hole) confirms creating coherent superposition of an electron and a trion as the initialization process of spin of doped electrons in quantum dots. In a neutral quantum dot, the exciton spin precession starts out of phase with spin precession of the doped electrons in a GaAs substrate and the precession frequency does not converge to 0 at the zero field limit. It contains the electron–hole exchange interaction and corresponds to the splitting between bright and dark excitons under the transverse magnetic field.  相似文献   

12.
Quaternion Dirac equation has been analyzed and its supersymmetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, nonzero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.  相似文献   

13.
In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices.  相似文献   

14.
Tunable carrier density plays a key role in the investigation of novel transport properties in three-dimensional topological semimetals.We demonstrate that the carrier density,as well as the mobility,of Dirac semimetal Cd_3As_2 nanoplates can be effectively tuned via in situ thermal treatment at 350 K for one hour,resulting in non-monotonic evolution by virtue of the thermal cycling treatments.The upward shift of Fermi level relative to the Dirac nodes blurs the surface Fermi-arc states,accompanied by an anomalous phase shift in the oscillations of bulk states,due to a change in the topology of the electrons.Meanwhile,the oscillation peaks of bulk longitudinal magnetoresistivity shift at high fields,due to their coupling to the oscillations of the surface Fermi-arc states.Our work provides a thermal control mechanism for the manipulation of quantum states in Dirac semimetal Cd_3As_2 at high temperatures,via their carrier density.  相似文献   

15.
One-body mechanisms of spin splitting of the energy spectrum of 2D electrons in a one-side doped (001) GaAs/Al x Ga1 ? x As quantum well have been studied theoretically and experimentally. The interfacial spin splitting has been shown to compensate (enhance) considerably the contribution of the bulk Dresselhaus (Bychkov-Rashba) mechanism. The theoretical approach is based on the solution of the effective mass equation in a quasi-triangular well supplemented by a new boundary condition at a high and atomically sharp hetero-barrier. The model takes into account the spin-orbit interaction of electrons with both bulk and interfacial crystal potential having C 2v symmetry, as well as the lack of inversion symmetry and nonparabolicity of the conduction band in GaAs. The effective 2D spin Hamiltonian including both bulk and interface contributions to the Dresselhaus (αBIA) and Rashba (αSIA) constants has been derived. The analytical relation between these constants and the components of the anisotropic nonlinear g-factor tensor in an oblique quantizing magnetic field has been found. The experimental approach is based, on one hand, on the detection of electron spin resonance in the microwave range and, on the other hand, on photoluminescence measurements of the nonparabolicity parameter. The interface contributions to αBIA and αSIA have been found from comparison with the theory.  相似文献   

16.
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.  相似文献   

17.
The results of two techniques of dipolar recoupling, REDOR and CPMAS, are compared in the case of a coupled multiple-spin system. A fundamentally different behavior is observed for these two techniques. In REDOR, the terms associated with each interaction S-I(k) commute with each other and no truncation takes place so that each addition of spin I(k) causes a splitting with its dipolar frequency. In CPMAS, the flip-flop terms of the dipolar Hamiltonian do not commute with the dominant term from the strongly coupled spin pair so that the weak coupling terms from the neighboring spin I(k) are effectively truncated by the dominant pair interaction. Spin dynamics calculations are in agreement with the experimental data in a cubane shaped cluster.  相似文献   

18.
周青春  王嘉赋  徐荣青 《物理学报》2002,51(7):1639-1644
采用单原子能级跃迁模型,导出在同时考虑自旋交换劈裂和自旋轨道耦合时磁光Kerr旋转的微观表达式,并就四能级跃迁情况,研究了磁光效应随原子基态及激发态能级自旋轨道耦合常数的变化规律.结果表明:磁光Kerr旋转角与自旋轨道耦合劈裂能量不成正比;单原子能级自旋轨道耦合常数为正或中间激发态自旋轨道耦合常数为负时,有利于提高磁光Kerr旋转. 关键词: 磁光Kerr效应 自旋轨道耦合 线性响应核 劈裂  相似文献   

19.
In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in the form of geometries of quantum dots is impossible.In gapless graphene,due to its unique electronic band structure,there is a minimal conductivity at Dirac points,that is,in the limit of zero doping.This creates a problem for using such a highly motivated new material in electronic devices.One of the ways to overcome this problem is the creation of a band gap in the graphene band structure,which is made by inversion symmetry breaking(symmetry of sublattices).We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for "local chemical potential" and "local gap".The calculated energy spectrum exhibits quite different features with and without the perturbations.A characteristic equation for bound states(BSs) has been obtained.It is surprisingly found that the relation between the radial functions of sublattices wave functions,i.e.,f_m~+(r),g_m~+(r),and f_m~-(r),g_m~-(r),can be established by SO(2) group.  相似文献   

20.
Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号