首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We introduce a network evolution process motivated by the network of citations in the scientific literature. In each iteration of the process a node is born and directed links are created from the new node to a set of target nodes already in the network. This set includes mm “ambassador” nodes and ll of each ambassador’s descendants where mm and ll are random variables selected from any choice of distributions plpl and qmqm. The process mimics the tendency of authors to cite varying numbers of papers included in the bibliographies of the other papers they cite. We show that the degree distributions of the networks generated after a large number of iterations are scale-free and derive an expression for the power-law exponent. In a particular case of the model where the number of ambassadors is always the constant mm and the number of selected descendants from each ambassador is the constant ll, the power-law exponent is (2l+1)/l(2l+1)/l. For this example we derive expressions for the degree distribution and clustering coefficient in terms of ll and mm. We conclude that the proposed model can be tuned to have the same power law exponent and clustering coefficient of a broad range of the scale-free distributions that have been studied empirically.  相似文献   

2.
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. For the simplest spinless fermion (or boson) systems, with say mm fermions (or bosons) in NN single particle states and interacting via kk-body interactions, we have EGUE(kk) [embedded GUE of kk-body interactions] with GUE embedding and the embedding algebra is U(N)U(N). A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different), particle addition to or removal from a given system and so on. Towards developing a complete statistical theory for transition strength densities (transition strengths multiplied by the density of states at the initial and final energies), we have derived formulas for the lower order bivariate moments of the strength densities generated by a variety of transition operators. Firstly, for a spinless fermion system, using EGUE(kk) representation for a Hamiltonian that is kk-body and an independent EGUE(tt) representation for a transition operator that is tt-body and employing the embedding U(N)U(N) algebra, finite-NN formulas for moments up to order four are derived, for the first time, for the transition strength densities. Secondly, formulas for the moments up to order four are also derived for systems with two types of spinless fermions and a transition operator similar to beta decay and neutrinoless beta decay operators. In addition, moments formulas are also derived for a transition operator that removes k0k0 number of particles from a system of mm spinless fermions. In the dilute limit, these formulas are shown to reduce to those for the EGOE version derived using the asymptotic limit theory of Mon and French (1975). Numerical results obtained using the exact formulas for two-body (k=2k=2) Hamiltonians (in some examples for k=3k=3 and 44) and the asymptotic formulas clearly establish that in general the smoothed (with respect to energy) form of the bivariate transition strength densities take bivariate Gaussian form for isolated finite quantum systems. Extensions of these results to bosonic systems and EGUE ensembles with further symmetries are discussed.  相似文献   

3.
A complex symplectic structure on a Lie algebra hh is an integrable complex structure JJ with a closed non-degenerate (2,0)(2,0)-form. It is determined by JJ and the real part ΩΩ of the (2,0)(2,0)-form. Suppose that hh is a semi-direct product g?Vg?V, and both gg and VV are Lagrangian with respect to ΩΩ and totally real with respect to JJ. This note shows that g?Vg?V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of ΩΩ and JJ are isomorphic.  相似文献   

4.
In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle VkVk to a decreasing family of kk foliations FiFi on a manifold MM. We have shown that there exists a (1,1)(1,1) tensor JJ of VkVk such that Jk≠0Jk0, Jk+1=0Jk+1=0 and we defined by LJ(Vk)LJ(Vk) the Lie Algebra of vector fields XX on VkVk such that, for each vector field YY on VkVk, [X,JY]=J[X,Y][X,JY]=J[X,Y].  相似文献   

5.
We investigate the geometry of the moduli space of NN vortices on line bundles over a closed Riemann surface ΣΣ of genus g>1g>1, in the little explored situation where 1≤N<g1N<g. In the regime where the area of the surface is just large enough to accommodate NN vortices (which we call the dissolving limit), we describe the relation between the geometry of the moduli space and the complex geometry of the Jacobian variety of ΣΣ. For N=1N=1, we show that the metric on the moduli space converges to a natural Bergman metric on ΣΣ. When N>1N>1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely on the critical locus of the Abel–Jacobi map of ΣΣ at degree NN. We describe consequences of this phenomenon from the point of view of multivortex dynamics.  相似文献   

6.
Discrete nonlinear Schrödinger (DNLS) equation describes a chain of oscillators with nearest-neighbor interactions and a specific nonlinear term. We consider its modification with long-range interaction through a potential proportional to 1/l1+α1/l1+α with fractional α<2α<2 and l   as a distance between oscillators. This model is called ααDNLS. It exhibits competition between the nonlinearity and a level of correlation between interacting far-distanced oscillators, that is defined by the value of αα. We consider transition to chaos in this system as a function of αα and nonlinearity. It is shown that decreasing of αα with respect to nonlinearity stabilize the system. Connection of the model to the fractional generalization of the NLS (called FNLS) in the long-wave approximation is also discussed and some of the results obtained for ααDNLS can be correspondingly extended to the FNLS.  相似文献   

7.
The random-crystal field spin-1 Blume–Capel model is investigated by the lowest approximation of the cluster-variation method which is identical to the mean-field approximation. The crystal field is either turned on randomly with probability pp or turned off with q=1−pq=1p in a bimodal distribution. Then the phase diagrams are constructed on the crystal field (ΔΔ)–temperature (kT/J)(kT/J) planes for given values of pp and on the (kT/J,pkT/J,p) planes for given ΔΔ by studying the thermal variations of the order parameters. In the latter, we only present the second-order phase transition lines, because of the existence of irregular wiggly phase transitions which are not good enough to construct lines. In addition to these phase transitions, the model also yields tricritical points for all values of pp and the reentrant behavior at lower pp values.  相似文献   

8.
9.
Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0T=0 1D insulator the charge stiffness D(T)D(T) vanishes for T>0T>0 and finite values of the on-site repulsion UU in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite TT and U>0U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0U=0 and vanishes for U>0U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=Uc=0U=Uc=0 for all finite temperatures T>0T>0. (At T=0T=0 such a transition is the quantum metal to Mott-Hubbard-insulator transition.) The interplay of the ηη-spin SU(2)SU(2) symmetry with the hidden U(1)U(1) symmetry beyond SO(4)SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model.  相似文献   

10.
An exact incompressible quantum liquid is constructed at the filling factor 1/m21/m2 in the square lattice. It supports deconfined fractionally charged excitation. At the filling factor 1/m21/m2, the excitation has fractional charge e/m2e/m2, where ee is the electric charge. This model can be easily generalized to the nn-dimensional square lattice (integer lattice), where the charge of excitations becomes e/mne/mn.  相似文献   

11.
The large-n expansion is applied to the calculation of thermal critical exponents describing the critical behavior of spatially anisotropic d-dimensional systems at m  -axial Lifshitz points. We derive the leading non-trivial 1/n1/n correction for the perpendicular correlation-length exponent νL2νL2 and hence several related thermal exponents to order O(1/n)O(1/n). The results are consistent with known large-n expansions for d  -dimensional critical points and isotropic Lifshitz points, as well as with the second-order epsilon expansion about the upper critical dimension d?=4+m/2d?=4+m/2 for generic m∈[0,d]m[0,d]. Analytical results are given for the special case d=4d=4, m=1m=1. For uniaxial Lifshitz points in three dimensions, 1/n1/n coefficients are calculated numerically. The estimates of critical exponents at d=3d=3, m=1m=1 and n=3n=3 are discussed.  相似文献   

12.
We investigate complete spacelike hypersurfaces in Lorentz–Minkowski space with two distinct principal curvatures and constant mmth mean curvature. By using Otsuki’s idea, we obtain the global classification result. As their applications, we obtain some characterizations for hyperbolic cylinders. We prove that the only complete spacelike hypersurfaces in Lorentz–Minkowski (n+1)(n+1)-spaces (n≥3n3) of nonzero constant mmth mean curvature (m≤n−1mn1) with two distinct principal curvatures λλ and μμ satisfying inf(λ−μ)2>0inf(λμ)2>0 are the hyperbolic cylinders. We also obtain a global characterization for hyperbolic cylinder Hn−1(c)×RHn1(c)×R in terms of square length of the second fundamental form.  相似文献   

13.
We study the oil displacement and production behavior in an isothermal thin layered reservoir model subjected to water flooding. We use the CMG’s (Computer Modelling Group  ) numerical simulators to solve mass balance equations. The influences of the viscosity ratio (m≡μoil/μwatermμoil/μwater) and the inter-well (injector-producer) distance rr on the oil production rate C(t)C(t) and the breakthrough time tbrtbr are investigated. Two types of reservoir configuration are used, namely one with random porosities and another with a percolation cluster structure. We observe that the breakthrough time follows a power-law of mm and rr, tbr∝rαmβtbrrαmβ, with α=1.8α=1.8 and β=−0.25β=0.25 for the random porosity type, and α=1.0α=1.0 and β=−0.2β=0.2 for the percolation cluster type. Moreover, our results indicate that the oil production rate is a power law of time. In the percolation cluster type of reservoir, we observe that P(t)∝tγP(t)tγ, with γ=−1.81γ=1.81, where P(t)P(t) is the time derivative of C(t)C(t). The curves related to different values of mm and rr may be collapsed suggesting a universal behavior for the oil production rate.  相似文献   

14.
Fluxmetric and magnetometric demagnetizing factors, NfNf and NmNm, for cylinders along the axial direction are numerically calculated as functions of material susceptibility χχ and the ratio γγ of length to diameter. The results have an accuracy better than 0.1% with respect to min(Nf,m,1-Nf,m)min(Nf,m,1-Nf,m) and are tabulated in the range of 0.01?γ?5000.01?γ?500 and -1?χ<∞-1?χ<. NmNm along the radial direction is evaluated with a lower accuracy from NmNm along the axis and tabulated in the range of 0.01?γ?10.01?γ?1 and -1?χ<∞-1?χ<. Some previous results are discussed and several applications are explained based on the new results.  相似文献   

15.
16.
We propose a network model with a fixed number of nodes and links and with a dynamic which favors links between nodes differing in connectivity. We observe a phase transition and parameter regimes with degree distributions following power laws, P(k)∼kP(k)k-γ, with γγ ranging from 0.20.2 to 0.50.5, small-world properties, with a network diameter following D(N)∼logND(N)logN and relative high clustering, following C(N)∼1/NC(N)1/N and C(k)∼kC(k)k-α, with αα close to 3. We compare our results with data from real-world protein interaction networks.  相似文献   

17.
18.
We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order qq, we first provide a generalized monogamy inequality of multi-qubit entanglement for q=2q=2 or 33. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis-qq entropy for 1≤q≤21q2 or 3≤q≤43q4, which also contains the multi-qubit polygamy inequality as a special case.  相似文献   

19.
A cosmological model has been constructed with Gauss–Bonnet-scalar interaction, where the Universe starts with exponential expansion but encounters infinite deceleration, q→∞q and infinite equation of state parameter, w→∞w. During evolution it subsequently passes through the stiff fluid era, q=2q=2, w=1w=1, the radiation dominated era, q=1q=1, w=1/3w=1/3 and the matter dominated era, q=1/2q=1/2, w=0w=0. Finally, deceleration halts, q=0q=0, w=−1/3w=1/3, and it then encounters a transition to the accelerating phase. Asymptotically the Universe reaches yet another inflationary phase q→−1q1, w→−1w1. Such evolution is independent of the form of the potential and the sign of the kinetic energy term, i.e., even a non-canonical kinetic energy is unable to phantomize (w<−1)(w<1) the model.  相似文献   

20.
We study integrable cases of pairing BCS hamiltonians containing several types of fermions. We prove that there exist three classes of such integrable models associated with classical rational r  -matrices and Lie algebras gl(2m)gl(2m), sp(2m)sp(2m) and so(2m)so(2m) correspondingly. We diagonalize the constructed hamiltonians by means of the algebraic Bethe ansatz. In the partial case of two types of fermions (m=2m=2) the obtained models may be interpreted as N=ZN=Z proton–neutron integrable models. In particular, in the case of sp(4)sp(4) we recover the famous integrable proton–neutron model of Richardson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号