首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The parafermionic observable has recently been used by number of authors to study discrete models, believed to be conformally invariant and to prove convergence results for these processes to SLE (Beffara and Duminil-Copin in arXiv:1010.0526v2, 2011; Duminil-Copin and Smirnov in arXiv:1007.0575v2, 2011; Hongler and Smirnov in arXiv:1008.2645v3, 2011; Ikhlef and Cardy in J. Phys. A 42:102001, 2009; Lawler in preprint, 2011; Rajabpour and Cardy in J. Phys. A 40:14703, 2007; Riva and Cardy in J. Stat. Mech. Theory Exp., 2006; Smirnov in International Congress of Mathematicians, vol. II, pp. 1421?C1451, 2006; Smirnov in Ann. Math. 172(2):1435?C1467, 2010; Smirnov in Proceedings of the International Congress of Mathematicians, Hyderabad 2010, vol.?I, pp. 595?C621, 2010). We provide a definition for a one parameter family of continuum versions of the parafermionic observable for SLE, which takes the form of a normalized limit of expressions identical to the discrete definition. We then show the limit defining the observable exists, compute the value of the observable up to a finite multiplicative constant, and prove this constant is non-zero for a wide range of ??. Finally, we show our observable for SLE becomes a holomorphic function for a particular choice of the parameter, which provides a new point of view on a fundamental property of the discrete observable.  相似文献   

3.
We prove the existence of a 1/N expansion to all orders in β matrix models with a confining, offcritical potential corresponding to an equilibrium measure with a connected support. Thus, the coefficients of the expansion can be obtained recursively by the “topological recursion” derived in Chekhov and Eynard (JHEP 0612:026, 2006). Our method relies on the combination of a priori bounds on the correlators and the study of Schwinger-Dyson equations, thanks to the uses of classical complex analysis techniques. These a priori bounds can be derived following (Boutet de Monvel et al. in J Stat Phys 79(3–4):585–611, 1995; Johansson in Duke Math J 91(1):151–204, 1998; Kriecherbauer and Shcherbina in Fluctuations of eigenvalues of matrix models and their applications, 2010) or for strictly convex potentials by using concentration of measure (Anderson et al. in An introduction to random matrices, Sect. 2.3, Cambridge University Press, Cambridge, 2010). Doing so, we extend the strategy of Guionnet and Maurel-Segala (Ann Probab 35:2160–2212, 2007), from the hermitian models (β = 2) and perturbative potentials, to general β models. The existence of the first correction in 1/N was considered in Johansson (1998) and more recently in Kriecherbauer and Shcherbina (2010). Here, by taking similar hypotheses, we extend the result to all orders in 1/N.  相似文献   

4.
The decoherent histories formalism, developed by Griffiths, Gell-Mann, and Hartle (in Phys. Rev. A 76:022104, 2007; arXiv:1106.0767v3 [quant-ph], 2011; Consistent Quantum Theory, Cambridge University Press, 2003; arXiv:gr-qc/9304006v2, 1992) is a general framework in which to formulate a timeless, ‘generalised’ quantum theory and extract predictions from it. Recent advances in spin foam models allow for loop gravity to be cast in this framework. In this paper, I propose a decoherence functional for loop gravity and interpret existing results (Bianchi et al. in Phys. Rev. D 83:104015, 2011; Phys. Rev. D 82:084035, 2010) as showing that coarse grained histories follow quasiclassical trajectories in the appropriate limit.  相似文献   

5.
We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when ${\tau \in (2,3]}$ where this mean equals infinity. We further study the critical exponents δ, β and γ, describing how the (root) magnetization behaves close to criticality. We rigorously identify these critical exponents and show that they take the values as predicted by Dorogovstev et al. (Phys Rev E 66:016104, 2002) and Leone et al. (Eur Phys J B 28:191–197, 2002). These values depend on the power-law exponent τ, taking the same values as the mean-field Curie-Weiss model (Exactly solved models in statistical mechanics, Academic Press, London, 1982) for τ > 5, but different values for ${\tau \in (3,5)}$ .  相似文献   

6.
A convergence theorem is obtained for quantum random walks with particles in an arbitrary normal state. This unifies and extends previous work on repeated-interactions models, including that of Attal and Pautrat (Ann Henri Poincaré 7:59–104 2006) and Belton (J Lond Math Soc 81:412–434, 2010; Commun Math Phys 300:317–329, 2010). When the random-walk generator acts by ampliation and either multiplication or conjugation by a unitary operator, it is shown that the quantum stochastic cocycle which arises in the limit is driven by a unitary process.  相似文献   

7.
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129–183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.  相似文献   

8.
For the critical focusing wave equation ${\square u = u^5 \, {\rm on} \, \mathbb{R}^{3+1}}$ in the radial case, we establish the role of the “center stable” manifold ${\Sigma}$ constructed in Krieger and Schlag (Am J Math 129(3):843–913, 2007) near the ground state (W, 0) as a threshold between blowup and scattering to zero, establishing a conjecture going back to numerical work by Bizoń et al. (Nonlinearity 17(6):2187–2201, 2004). The underlying topology is stronger than the energy norm.  相似文献   

9.
We study the Glauber dynamics for the zero-temperature stochastic Ising model in dimension d ≥ 4 with “plus” boundary condition. Let ${\mathcal{T}_+}$ be the time needed for an hypercube of size L entirely filled with “minus” spins to become entirely “plus”. We prove that ${\mathcal{T}_+}$ is O(L 2(log L) c ) for some constant c, not depending on the dimension. This brings further rigorous justification for the so-called “Lifshitz law” ${\mathcal{T}_{+} = O(L^{2})}$ (Fischer and Huse in Phys Rev B 35:6841–6848, 1987; Lifshitz in Sov Phys JETP 15:939–942, 1962) conjectured on heuristic grounds. The key point of our proof is to use the detailed knowledge that we have on the three-dimensional problem: results for fluctuation of monotone interfaces at equilibrium and mixing time for monotone interfaces dynamics extracted from Caputo et al. (Comm Pure Appl Math 64:778–831, 2011) to get the result in higher dimension.  相似文献   

10.
Since publication of M.M. Block in Eur. Phys. J. C 65, 1 (2010), we have discovered that the algorithm of Block (2010) does not work if g(s)→0 less rapidly than 1/s, as s→∞. Although we require that g(s)→0 as s→∞, it can approach 0 as ${1\over s^{\beta}}$ , with 0<β<1, and still be a proper Laplace transform. In this note, we derive a new numerical algorithm for just such cases, and test it for $g(s)={\sqrt{\pi}\over \sqrt{s}}$ , the Laplace transform of ${1\over\sqrt{v}}$ .  相似文献   

11.
In our previous work (Grillakis et al. in Commun Math Phys 294:273–301, 2010; Adv Math 228:1788–1815, 2011) we introduced a correction to the mean field approximation of interacting Bosons. This correction describes the evolution of pairs of particles that leave the condensate and subsequently evolve on a background formed by the condensate. In Grillakis et al. (Adv Math 228:1788–1815, 2011) we carried out the analysis assuming that the interactions are independent of the number of particles N. Here we consider the case of stronger interactions. We offer a new transparent derivation for the evolution of pair excitations. Indeed, we obtain a pair of linear equations describing their evolution. Furthermore, we obtain a priori estimates independent of the number of particles and use these to compare the exact with the approximate dynamics.  相似文献   

12.
We update the results on the B-lepton invariant-mass distribution in the dilepton channel in top decay, with respect to the ones presented in Corcella and Mescia (Eur. Phys. J. C 65:171, 2010).  相似文献   

13.
Consistent supercurrent multiplets are naturally associated with linearized off-shell supergravity models. In S.M. Kuzenko, J. High Energy Phys. 1004, 022 (2010) we presented the hierarchy of such supercurrents which correspond to all the models for linearized 4D $\mathcal{N}=1$ supergravity classified a few years ago. Here we analyze the correspondence between the most general supercurrent given in S.M. Kuzenko, J. High Energy Phys. 1004, 022 (2010) and the one obtained eight years ago in M. Magro et al., Ann. Phys. 298, 123 (2002) using the superfield Noether procedure. We apply the Noether procedure to the general $\mathcal{N}=1$ supersymmetric nonlinear sigma-model and show that it naturally leads to the so-called $\mathcal{S}$ -multiplet, revitalized in Z. Komargodski, N. Seiberg, J. High Energy Phys. 1007, 017 (2010).  相似文献   

14.
We present a mathematical derivation of some of the most important physical quantities arising in topological bilayer systems with permutation twist defects as introduced by Barkeshli et al. (Phys Rev B 87:045130_1-23, 2013). A crucial tool is the theory of permutation equivariant modular functors developed by Barmeier et al. (Int Math Res Notices 2010:3067–3100, 2010; Transform Groups 16:287–337, 2011).  相似文献   

15.
In the light of the recent Daya Bay result $\theta_{13}^{\mathrm{DB}}=8.8^{\circ}\pm0.8^{\circ}$ , we reconsider the model presented in Meloni et?al. (J. Phys.?G 38:015003, 2011), showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et?al. (New J. Phys. 10:113011,?2008) and where $\theta_{13}=\theta_{13}^{\mathrm{DB}}$ , the predicted values of the CP phase are ????±??/4.  相似文献   

16.
We present a simple isomorphism between the algebra of one real chiral Fermi field and the algebra of n real chiral Fermi fields. The isomorphism preserves the vacuum state. This is possible by a “change of localization”, and gives rise to new multilocal symmetries generated by the corresponding multilocal current and stress–energy tensor. The result gives a common underlying explanation of several remarkable recent results on the representation of the free Bose field in terms of free Fermi fields (Anguelova, arXiv:1112.3913, 2011; Anguelova, arXiv:1206.4026, 2012), and on the modular theory of the free Fermi algebra in disjoint intervals (Casini and Huerta, Class Quant Grav 26:185005, 2009; Longo et al., Rev Math Phys 22:331–354, 2010)  相似文献   

17.
We prove a couple of new endpoint geodesic restriction estimates for eigenfunctions. In the case of general 3-dimensional compact manifolds, after a TT* argument, simply by using the L 2-boundedness of the Hilbert transform on ${\mathbb{R}}$ , we are able to improve the corresponding L 2-restriction bounds of Burq, Gérard and Tzvetkov (Duke Math J 138:445–486, 2007) and Hu (Forum Math 6:1021–1052, 2009). Also, in the case of 2-dimensional compact manifolds with nonpositive curvature, we obtain improved L 4-estimates for restrictions to geodesics, which, by Hölder’s inequality and interpolation, implies improved L p -bounds for all exponents p ≥ 2. We do this by using oscillatory integral theorems of Hörmander (Ark Mat 11:1–11, 1973), Greenleaf and Seeger (J Reine Angew Math 455:35–56, 1994) and Phong and Stein (Int Math Res Notices 4:49–60, 1991), along with a simple geometric lemma (Lemma 3.2) about properties of the mixed-Hessian of the Riemannian distance function restricted to pairs of geodesics in Riemannian surfaces. We are also able to get further improvements beyond our new results in three dimensions under the assumption of constant nonpositive curvature by exploiting the fact that, in this case, there are many totally geodesic submanifolds.  相似文献   

18.
We present a proof of the mirror conjecture of Aganagic and Vafa (Mirror Symmetry, D-Branes and Counting Holomorphic Discs. http://arxiv.org/abs/hep-th/0012041v1, 2000) and Aganagic et al. (Z Naturforsch A 57(1–2):128, 2002) on disk enumeration in toric Calabi-Yau 3-folds for all smooth semi-projective toric Calabi-Yau 3-folds. We consider both inner and outer branes, at arbitrary framing. In particular, we recover previous results on the conjecture for (i) an inner brane at zero framing in ${K_{\mathbb{P}^2}}$ K P 2 (Graber-Zaslow, Contemp Math 310:107–121, 2002), (ii) an outer brane at arbitrary framing in the resolved conifold ${\mathcal{O}_{\mathbb{P}^1}(-1)\oplus \mathcal{O}_{\mathbb{P}^1}(-1)}$ O P 1 ( - 1 ) ⊕ O P 1 ( - 1 ) (Zhou, Open string invariants and mirror curve of the resolved conifold. http://arxiv.org/abs/1001.0447v1 [math.AG], 2010), and (iii) an outer brane at zero framing in ${K_{\mathbb{P}^2}}$ K P 2 (Brini, Open topological strings and integrable hierarchies: Remodeling the A-model. http://arxiv.org/abs/1102.0281 [hep-th], 2011).  相似文献   

19.
Noncommutative generalizations of a supersymmetry algebra in two dimensions have been introduced earlier in Abbaspur (Int. J. Mod. Phys. A 18:855?C878, 2003; Mod. Phys. Lett. A 18:587?C599, 2003). In this paper we present a field theoretic realization for these algebras in the context of $\mathcal{N}=1$ supersymmetric U(1) gauge theories in two dimensions. We also describe a possible generalization to 4-dimensional theories.  相似文献   

20.
An obvious strategy to escape from a stable circular orbit in the Schwarzschild spacetime is to employ a tangential instantaneous acceleration. Using the theory of optimal rocket trajectories in general relativity, recently developed in Henriques and Natário (J Optim Theory Appl 154:500–552; 2011), we show that this manoeuvre satisfies the optimality conditions for maximizing the rocket’s final energy (given a fixed amount of fuel) if and only if the magnitude of the acceleration is smaller than a certain bound. This is the general relativistic version of a result by Lawden (J Brit Interplan Soc 12:68–71; 1953).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号