首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A standard protocol was developed to determine the water content by thermal analysis of milk of magnesia (MoM). Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used in a novel manner for examining the physical characteristics of the commercial pharmaceutical suspensions. Moisture analyzer and oven-dry methods validate the proposed protocol. MoM consists primarily of water and magnesium hydroxide [Mg(OH)2]. Experimental design of the thermal analysis parameters were considered including sample size, flowing atmosphere, sample pan, and heating rate for both DSC and TG. The results established the optimum conditions for minimizing heat and mass transfer effect. Sample sizes used were: (5?C15?mg) for DSC and (30?C50?mg) for TG. DSC analysis used crimped crucibles with a pinhole, which allowed maximum resolution and gave well-defined mass (water) loss. TG analysis used a heating rate of 10?°C/min?1 in an atmosphere of nitrogen. The heat of crystallization, heat of fusion, and heat of vaporization of unbound water are 334, 334, and 2,257?Jg?1, respectively (Mitra et al. Proc NATAS Annu Conf Therm Anal Appl 30:203?C208, 2002). The DSC average water content of (MoM) was 80?wt% for name brand and 89.5?wt% for generic brand, based on the relative crystallization, melting and vaporization heats/Jg?1 of distilled water in the recently purchased (2011) MoM samples. The TG showed a two-step process, losing water at 80?C135?°C for unbound water and bound water (MgO·H2O) at 376?C404?°C, yielding a total average water loss of 91.9?% for name brand and 90.7?% for generic brand by mass. The difference between the high-temperature TG and the lower-temperature DSC can be attributed for the decomposition of magnesium hydroxide or MgO·H2O. Therefore in performing this new approach to water analysis by heating to a high temperature decomposed the magnesium hydroxide residue. It was determined that the TG method was the most accurate for determining bound and unbound water.  相似文献   

2.
The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures (Td) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite sides display liquid crystalline phases with exception of 3,5-type G1 dendrimer; while acetonide terminated dendrimers displayed merely melting transitions. Dendrimers having terminal alkyl chains at positions 3,4 or 3,4,5 in aromatic moieties exhibited enantiotropic mesophases. However, the thermal behavior of the dendrimers with 3,5-substitution pattern was different: the 3,5-type G1 dendrimer exhibit a lack of mesomorphic transition, and in the case of the 3,5-type G2 dendrimer, the mesophase was absent in the first heating scan but was observed during the subsequent cooling and heating scans at the rate of 10 °C/min.  相似文献   

3.
Bi2Te3 nanoparticles (NPs) have been synthesized at 50?°C by a low-cost wet chemical route. The structural properties of product sample were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy. Thermal properties of product sample were investigated by differential scanning calorimetry (DSC), thermogravimetric (TG), and transient plane source techniques. The XRD and selected area electron diffraction of Bi2Te3 NPs result showed the polycrystalline nature with a rhombohedral (R3m) structure of the nanocrystallites. The average grain size of Bi2Te3 NPs was found to be about 30?nm by XRD and TEM measurements. DSC result shows one endothermic peak and one exothermic peak. TG result shows that only 48?% mass loss has occurred in Bi2Te3 sample. The obtained lower thermal conductivity of Bi2Te3 NPs is about 0.3?W m?1 K?1 at room temperature, which is caused by considering the crystalline nature of this material.  相似文献   

4.
Thermogravimetric (TG) techniques and differential scanning calorimetry (DSC) used for the study of pre-formulation or drug–adjuvant compatibility have been gaining importance in Brazil. These techniques are being used for the verification of possible interactions between drugs and adjuvants. Aiming at studying the behavior of a plant extract and its mixture with adjuvants, using these thermoanalytical techniques the plant species Heliotropium indicum L. was used. This plant which is originally from India and has been well acclimatized in Brazil has healing and anti-inflammatory properties. The methodology for obtaining the extract followed the Brazilian Pharmacopoeia methodology. And the incorporation of the extract with adjuvants was through binary mixtures (1:1 w/w). The TG and DSC curves were obtained under nitrogen atmosphere (25 mL min?1) at a heating rate of 5 °C min?1; TG tests were analyzed within a temperature range from 25 to 600 °C and DSC from 25 to 300 °C. The TG curves show good thermal stability of the extract and its mixtures with adjuvants up to 150 °C, except the propylene glycol (PLG). The DSC curves revealed an incompatibility of the extract with methylparaben and PLG mixture.  相似文献   

5.
A series of new chiral side-chain liquid crystalline polymers (P1–P7) have been synthesized with poly(methylhydrogeno)siloxane, two chiral liquid crystalline monomers, cholesteryl-4-allyloxybenzoate (M1) and cholesteryl 4-(10-undecylen-1-yloxy) benzoate (M2), and a nematic liquid crystalline monomer, 4-(trifluoromethyl)phenyl 4-(undec-10-enoyloxy)benzoate (M3). The chemical structures and liquid crystalline properties of the synthesized polymers have been investigated by FTIR, 1H-NMR, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). All chiral polymers show wide mesophase temperature ranges and a high thermal stability with decomposition temperatures (T d) at 5 % weight loss greater than 300 °C. P1–P4 display a single cholesteric phase, but P5–P7 containing more fluorinated units show a smectic A (SA) phase besides a cholesteric phase. The optical properties of the polymers have been characterized by circular polarization spectra and optical rotation analysis. The cholesteric polymers P3 and P4 exhibit different colors at room temperature, and the color can remain over 24 months. The maximum reflection bands of polymers P1–P4 shift to long wavelength with increasing the content of M3 in the polymer systems. For P5–P7, the reflection wavelengths change sharply around the temperature of the SA–Ch phase transition. The specific rotation value of P2 smoothly decreases from ?8.2° to ?0.29° when it is heated, but the specific rotation value of polymer P7 changes from negative value to positive value on heating cycle. The optical properties of the polymers offer tremendous potential for various optical applications.  相似文献   

6.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   

7.
Acetone, hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) are easily to produce triacetone triperoxide (TATP), which is an organic peroxide and a hazardous material. The aim of this study was to analyze the thermal hazard of various fire-extinguishing reagents mixed with TATP. Various functions of fire-extinguishing reagents may have different extent of reactions with TATP. Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG) were used to detect the thermal hazard and to evaluate the effect of fire-extinguishing reagents mixed with TATP under fire condition. TATP decomposed rapidly and final decomposition was calculated before 200 °C. Therefore, heat of decomposition (ΔH d) of TATP was evaluated to be 2,500 J g?1 by DSC under 2 °C min?1 of heating rate. H2O2, acetone, and H2SO4 should not be mixed in a wastewater drum. TATP decomposed at 50 °C by DSC using O2 of reaction gas that is an exothermic reaction and can decompose a large amount of heat. Therefore, TATP was applied to assess thermal pyrolysis by DSC employing N2 of reaction gas that can analyze an endothermic reaction. Mass loss percentage of TATP was evaluated to be 100 % when the ambient temperature exceeds 110 °C by TG using O2 or N2 of reaction gas.  相似文献   

8.
The thermal behaviour of BTAw, a high nitrogen fuel   总被引:1,自引:0,他引:1  
BTAw (bis-(1(2)H-tetrazol-5yl)-amine monohydrate) has recently been considered for use as a low-smoke pyrotechnic fuel. There is relatively little information available in the literature concerning the thermal properties of BTAw or its precursors. In the present work, various thermoanalytical experiments were performed on BTAw and BTA (bis-(1(2)H-tetrazol-5yl)-amine) in an effort to better characterize the thermal stability and decomposition of these compounds. Variable heating rate studies were carried out on BTAw samples in a helium atmosphere using DSC and TG. Two steps were seen in the results: dehydration followed by decomposition. Kinetic parameters were determined for both of these steps using a number of methods. Experiments using simultaneous TG-DTA coupled with FTIR and MS were performed on BTAw in both helium and dry and CO2 free air atmospheres, and evolved gas analysis was used to determine the gaseous decomposition products. The thermal stability of BTAw and BTA was examined using accelerating rate calorimetry (ARC).  相似文献   

9.
The nano poly(phenylsilsesquioxane) spheres (nano-PPSQ) were prepared by the sol?Cgel method and incorporated into poly(methyl methacrylate) (PMMA) by in situ bulk polymerization of methyl methacrylate. The structure of nano-PPSQ was confirmed by transmission electron microscope and thermogravimetry analysis (TG). The interaction between nano-PPSQ and PMMA was investigated by Fourier transform infrared spectra (FT-IR). The influence of nano-PPSQ on the thermal stability of PMMA was investigated by TG and differential scanning calorimetry (DSC) measurements. The results indicated that nano-PPSQ enhanced the thermal stability and the temperatures of glass transition (T g) of nanocomposites. The effect of the heating rate in dynamic measurements (5?C30?°C?min?1) on kinetic parameters such as activation energy by TG both in nitrogen and air was investigated. The Kissinger method was used to determine the apparent activation energy for the degradation of pure PMMA and nanocomposites. The kinetic results showed that the apparent activation energy for degradation of nanocomposites was higher than that of pure PMMA under air.  相似文献   

10.
The sulfur containing amino acid bridging polynuclear transition metal complex has been synthesized and characterized by different measurements such as UV?CVis, FT?CIR, C?CH?CN?CS, TG?CDTA, ICP-AES, differential scanning calorimeter (DSC), and XRD. DSC has showed negative specific heat of this polynuclear system and has used to evaluate some thermodynamic constants like activation energy (E a), frequency factor (A), enthalpy, and entropy of that system. The specific heat capacity is measured at heating rate of 10?°C?min?1 in room atmosphere of this polynuclear complex. The characterization of this complex has showed five Co(III) and four Cu(II) atoms and this complex contained ten sulfur containing methionine amino acid units.  相似文献   

11.
2-Undecanone (methyl nonyl ketone), a natural non-toxic insect repellant compound, was recently isolated from the trichomes of wild tomatoes, and is currently being introduced as a replacement for insect repellants containing N,N-diethyl-meta-toluamide or DEET, which are permitted for use on children older than 2 months. In an effort to improve the delivery of the somewhat volatile 2-undecanone, we have successfully formed the crystalline inclusion compound (IC) between 2-undecanone and α-cyclodextrin (α-CD), using a coprecipitation method. Employing WAXD, DSC, FT-IR, and NMR observations, we have confirmed that 2-undecanone is included as a guest inside the host α-CD cavities, and forms a channel-type crystalline IC. The release characteristics of 2-undecanone insect repellant from its α-CD-IC were studied using TGA either at a heating rate of 20 °C/min in nitrogen, and air atmospheres or at constant temperatures of 25, and 40 °C over a period of 24 h. The release/loss of 2-undecanone insect repellant from its α-CD-IC was ~60% after 24 h at 40 °C. By comparison, ~97% of pure 2-undecanone was volatilized, and lost over 24 h at 40 °C. In addition, insecticidal activity of 2-undecaonone from its α-CD complex against German cockroaches was evaluated. The results show an excellent repellency that 100% of the cockroaches were repelled for the first 2 days after application. These results suggest that the gradual, long-term delivery of the insect repellant 2-undecanone can be significantly improved through employment of its crystalline α-CD-IC.  相似文献   

12.
A main-chain liquid crystalline azo-polymer (BPHCHA) was prepared through the copper-catalyzed “click” reaction between the alkyne group on 4,4′-bis((6-(propargyloxy)hexyl)oxy) biphenyl (BPH) and the azide group on 4-(6-azidohexyloxy)carbonyl-4′-(6′-azidohexyloxy) azobenzene (AHCHA). The “click” reaction was confirmed by FT-IR, 1H NMR, and GPC studies. The phase transition behavior of BPH, AHCHA, and the resulting azo-polymer BPHCHA was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). AHCHA and BPHCHA exhibited mesomorphic behavior, while BPH is a crystalline compound. A liquid crystalline phase from 39 to 69 °C for AHCHA upon heating was observed under POM. Schlieren texture was observed at 130 °C for BPHCHA on cooling from 150 °C and annealed at 130 °C for 15 min. Moreover, DSC and POM studies showed that BPHCHA exhibited monotropic mesomorphic behavior.  相似文献   

13.
Syntheses of segmented copoly(ether-ester)s with (oxy-2-methyl-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl)/(oxy-2-chloro-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl) (methyl-/chloro-substituted) hard segments and poly(oxytetramethylene) soft segments, are reported. The methodology consisted of staged addition melt condensation of terephthaloyl chloride, poly(oxytetramethylene)glycol (POTMG; \[ \bar M_n \] = 250, 650, 1000, 2000) and methyl-/chloro-hydroquinone. Lengths of hard and soft segments were varied while the weight ratio of hard to soft segment was maintained constant. Copolymers were characterised for solubility behavior, and by infrared spectroscopy, x-ray diffraction, DSC, and polarizing microscopy. Thermal properties were found to be dependent on length of soft segment as well as on the type of substituent in the mesogenic core. In both methyl- as well as chloro-substituted copoly(ether-ester)s soft segment glass transition temperature (Tgs) was obtained between ?40 and ?50°C. All copoly(ether-ester)s are elastomeric at room temperature (25°C). These polymers exhibit thermotropic liquid crystalline behavior and were easily sheared and aligned in liquid crystalline state. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The non-isothermal decomposition of anhydrous disilver malonate was studied up to 300°C by means of TG, DTA and DSC techniques in different atmospheres (e.g. N2, H2 and air). Acetic acid, CO2, acetone and CO were identified as the volatile decomposition products using gas chromatography. Silver metal, on the other hand, was identified as the final solid product using X-ray powder diffraction. The mechanism described involves the breakdown of adsorbed radicals, probably including-CH2COO- and related species, on the surface of the metallic silver product. The activation energy (ΔE) and the frequency factor (InA) were calculated for the decomposition process from the variation of peak temperature (of the DTA curves) with the rate of heating (φ). The enthalpy change (ΔH), the heat capacity (C p) and entropy change (ΔS) were calculated from the DSC measurements.  相似文献   

15.
Two series of poly(imide-ester)s (PIEs) and poly(ether-imide-ester)s (PEIEs), having benzoxazole or benzothiazole pendent groups, were conveniently prepared by the diphenylchlorophosphate-activated direct polyesterification of two bis(imide-carboxylic acid)s (1), such as 2-[3,5-bis(N-trimellitimidoyl)phenyl]benzoxazole (1 O ) and 2-[3,5-bis(Ntrimellitimidoyl) phenyl]benzothiazole (1 S ) and two bis(imide-ether-carboxylic acid)s (2), such as 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzoxazole (2 O ), and 2-[3,5-bis(4-trimellitimidophenoxy)-phenyl]benzothiazole (2 S ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. The structures, solubilities and thermal properties of obtained polymers were investigated in detail. All of the resulting polymers were characterized by FTIR and 1H-NMR spectroscopy and elemental analysis. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, tetrahydrofuran and m-cresol, as well as in polar organic solvents, such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide and dimethyl sulfoxide. The modified polymers were obtained in quantitative yields with inherent viscosities between 0.47 and 0.67 dl·g?1. Experimental results indicated that all the polymers had glass transition temperature between 198 °C and 262 °C, the decomposition temperature at 10% weight loss between 398 °C and 531 °C under nitrogen.  相似文献   

16.
Symmetrical four-chained (tetracatenar) di-hydrazine derivatives, namely oxalyl N',N'-bis(3,4-dialkoxybenzoyl)-hydrazide (BFH-n, n?=?4, 6, 8, 10), were synthesised. Investigations on the liquid crystalline properties by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarising optical microscopy (POM) showed that the di-hydrazine derivatives exhibited columnar mesophases and the symmetry of the mesophase changes from rectangular to hexagonal on increasing the temperature. The rectangular columnar mesophases of BFH-n (n?=?6, 8, 10) remained stable down to 10°C during cooling and the subsequent recrystallisation from the Colr phase of BFH-n (n?=?6, 8, 10) was observed on the second heating runs. Furthermore, the average number of molecules packing in a column slice was estimated to be three, based on their X-ray diffraction results. Intermolecular hydrogen bonding between –C=O and ?N?H groups in crystalline and liquid crystalline phases was confirmed.  相似文献   

17.
The thermal decomposition behaviors of styrene?C(ethylene butylene)?Cstyrene (SEBS) thermoplastic elastomer filled with liquid crystalline polymer (LCP), organomontmorillonite (OMMT), and carbon nanotube (CNT) as a heat stabilizing filler, were comparatively investigated using nonisothermal- and isothermal-thermogravimetric analyses in air. The isoconversional method was employed to evaluate the kinetic parameters (E a, lnA, and n) under dynamic heating. For neat samples, OMMT and CNT exhibited their respective lowest and highest thermal stabilities as revealed from the lowest and the highest T onset values, respectively. The decomposition rates of the composites containing OMMT at the temperature >250?°C were higher than those containing CNT and LCP, respectively, whereas the elastomer matrix degraded with the highest rate. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of LCP, OMMT, and CNT into elastomer matrix improved the thermal stability. Especially, the CNT- and OMMT-containing composites significantly improved the thermal stability compared with the neat matrix polymer. Simultaneously recorded DSC thermograms revealed that the degradation processes for the neat polymers and their composites were exothermic in air. From the simultaneously recorded DSC data, the enthalpy of thermal decomposition for each composite system was found to be lower than that of the neat matrix and mostly decreasing with increasing filler loading. The isothermal decomposition stabilities of the neat SEBS and its composites containing the different fillers were in agreement with those of the nonisothermal investigation.  相似文献   

18.
Cashew gum, an exudate polysaccharide from Anacardium occidentale L., was purified by alcohol precipitation. Thermal behavior of this polysaccharide was investigated by simultaneous TG/DTG/DSC-FT-IR analysis performed under nitrogen and air atmospheres and heating rate of 10 K min?1. TG/DTG curves under oxidative atmosphere were similar to the curves under N2 atmosphere until 340 °C, however, it was observed a profile difference due to the presence of two DTG peaks at 430 and 460 °C. DSC results showed endothermic and exothermic events corroborating with TG/DTG curves. The Simultaneous TG/DSC-FTIR analysis revealed that evolved gases from the decomposition of cashew gum sample were CO2, CO, and groups: O–H, C–H, C=O, C–C, and C–O, in nitrogen and air atmospheres. Energy dispersive X-ray fluorescence analysis from the ash showed that the elements in larger amounts are CaO, MgO, and K2O.  相似文献   

19.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

20.
The current trend is to use clay minerals as nanofillers in polymer blends. Kaolin is a hydrated aluminum silicate of a group of natural clays and it is one of the most important kaolin mineral fillers. The interactions between vulcanizing ingredients such a zinc oxide (ZnO), stearic acid (SA), CBS (N-cyclohexyl-2-benzothiazolesulfenamide), and sulfur (S) with kaolin (K) filler were studied in this work. We prepared systems of two and three components with kaolin at 1:1 ratio by mass, without rubber matrix. The second step was heating samples containing ZnO, SA, and CBS with kaolin at 140 °C. The interactions between vulcanizing components were investigated by thermal analysis (DTA, TG, and DSC), X-ray analysis, and Fourier transform infrared spectroscopy (FT-IR). Zinc stearate was formed in the presence of ZnO and SA as expected, which was confirmed by X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号