首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of well accessible cationic ruthenium allenylidene complexes of the general type [(eta6-arene)(R3P)RuCl(=C=CR'2)]+ X- is described which constitute a new class of pre-catalysts for ring closing olefin metathesis reactions (RCM) and provide an unprecedented example for the involvement of metal allenylidenes in catalysis. They effect the cyclization of various functionalized dienes and enynes with good to excellent yields and show a great tolerance towards an array of functional groups. Systematic variations of their basic structural motif have provided insights into the essential parameters responsible for catalytic activity which can be enhanced further by addition of Lewis or Bronsted acids, by irradiation with UV light, or by the adequate choice of the "non-coordinating" counterion X-. The latter turned out to play a particularly important role in determining the rate and selectivity of the reaction. A similarly pronounced influence is exerted by remote substituents on the allenylidene residue which indicates that this ligand (or a ligand derived thereof) may remain attached to the metal throughout the catalytic process. X-ray crystal structures of the catalytically active allenylidene complexes 3b.PF6 and 15.OTf as well as of the chelate complex 10 required for the preparation of the latter catalyst are reported.  相似文献   

2.
The 14-electron ruthenium phosphonium alkylidene complex [(IH2Mes)Cl2Ru=CH(PCy3)][B(C6F5)4], 1b, a highly active olefin metathesis catalyst, reacts with stoichiometric quantities of ethylene at -50 degrees C in CD2Cl2 to generate the ruthenacyclobutane complex [(IH2Mes)Cl2RuCH2CH2CH2], 2, and [CH2=CH(PCy3)][B(C6F5)4] in quantitative yield by NMR spectroscopy. 1H and 13C NMR spectroscopies on 2 and 2-13C3 are consistent with a symmetrical C2v structure, providing the first experimental information concerning this crucial intermediate in ruthenium-mediated olefin metathesis. At -50 degrees C, exchange with free ethylene takes place on the chemical time scale. Complex 2 decomposes in solution upon warming to room temperature, generating propene and unknown ruthenium product(s).  相似文献   

3.
The mechanism of the trans to cis isomerization in Ru complexes with a chelating alkylidene group has been investigated by using a combined theoretical and experimental approach. Static DFT calculations suggest that a concerted single‐step mechanism is slightly favored over a multistep mechanism, which would require dissociation of one of the ligands from the Ru center. This hypothesis is supported by analysis of the experimental kinetics of isomerization, as followed by 1H NMR spectroscopy. DFT molecular dynamics simulations revealed that the variation of geometrical parameters around the Ru center in the concerted mechanism is highly uncorrelated; the mechanism actually begins with the transformation of the square‐pyramidal trans isomer, with the Ru?CHR bond in the apical position, into a transition state that resembles a metastable square pyramidal complex with a Cl atom in the apical position. This high‐energy structure collapses into the cis isomer. Then, the influence of the N‐heterocyclic carbene ligand, the halogen, and the chelating alkylidene group on the relative stability of the cis and trans isomers, as well as on the energy barrier separating them, was investigated with static calculations. Finally, we investigated the interconversion between cis and trans isomers of the species involved in the catalytic cycle of olefin metathesis; we characterized an unprecedented square‐pyramidal metallacycle with the N‐heterocyclic carbene ligand in the apical position. Our analysis, which is relevant to the exchange of equatorial ligands in other square pyramidal complexes, presents evidence for a remarkable flexibility well beyond the simple cistrans isomerization of these Ru complexes.  相似文献   

4.
5.
Gradient-corrected (BP86) density functional calculations were used to study alternative mechanisms of the metathesis reactions between ethene and model catalysts [(PH(3))(L)Cl(2)Ru[double bond]CH(2)] with L=PH3 (I) and L=C(3)N(2)H(4)=imidazol-2-ylidene (II). On the associative pathway, the initial addition of ethene is calculated to be rate-determining for both catalysts (Delta G(22-25)*[double bond] kcal mol(-1)). The dissociative pathway starts with the dissociation of phosphane, which is rather facile (Delta G(298)* is approximately equal to 5-10 kcal mol(-1)). The resulting active species (L)Cl(2)Ru[double bond]CH(2) can coordinate ethene cis or trans to L. The cis addition is unfavorable and mechanistically irrelevant (Delta G(298)* is approximately equal to 21-25 kcal mol(-1)). The trans coordination is barrierless, and the rate-determining step in the subsequent catalytic cycle is either ring closure of the complex to yield the ruthenacyclobutane (catalyst I, Delta G(298)*=12 kcal mol(-1)), or the reverse reaction (catalyst II, ring opening, Delta G(298)*=10 kcal mol(-1)), that is, II is slightly more active than I. For both catalysts, the dissociative mechanism with trans olefin coordination is favored. The relative energies of the species on this pathway can be tuned by ligand variation, as seen in (PMe(3))(2)Cl(2)Ru[double bond]CH(2) (III), in which phosphane dissociation is impeded and olefin insertion is facilitated relative to I. The differences in calculated relative energies for the model catalysts I-III can be rationalized in terms of electronic effects. Comparisons with experiment indicate that steric effects must also be considered for real catalysts containing bulky substituents.  相似文献   

6.
Ring-closing metathesis (RCM) is the key step in a recently reported synthesis of salicylihalamide and related model compounds. Experimentally, the stereochemistry of the resulting cycloolefin (cis/trans) depends strongly on the substituents that are present in the diene substrate. To gain insight into the factors that govern the observed stereochemistry, density functional theory (DFT) calculations have been carried out for a simplified dichloro(2-propylidene)(imidazole-2-ylidene)ruthenium catalyst I, as well as for the real catalyst II with two mesityl substituents on the imidazole ring. Four model substrates are considered, which are closely related to the systems studied experimentally, and in each case, two pathways A and B are possible since the RCM reaction can be initiated by coordination of either of the two diene double bonds to the metal center. The first metathesis yields a carbene intermediate, which can then undergo a second metathesis by ring closure, metallacycle formation, and metallacycle cleavage to give the final cycloolefin complex. According to the DFT calculations, the stereochemistry is always determined in the second metathesis reaction, but the rate-determining step may be different for different catalysts, substrates, and pathways. The ancillary N-heterocyclic carbene ligand lies in the Ru-Cl-Cl plane in the simplified catalyst I, but is perpendicular to it in the real catalyst II, and this affects the relative energies of the relevant intermediates and transition states. Likewise, the introduction of methyl substituents in the diene substrates influences these relative energies appreciably. Good agreement with the experimentally observed stereochemistry is only found when using the real catalyst II and the largest model substrates in the DFT calculations.  相似文献   

7.
The synthesis and characterization of latent 18-electron ruthenium benzylidene complexes (PCy3)((κN,O)-picolinate)2RuCHPh (5) and (H2IMes)((κN,O)-picolinate)2RuCHPh (6) are described. Both complexes appear as two isomers. The ratio between the isomers is dependent on l-type ligand. The complexes are inactive in ring-closing metathesis and ring-opening metathesis polymerization reactions even at elevated temperatures in the absence of stimuli. Upon addition of HCl, complexes 5 and 6 become highly active in olefin metathesis reactions. The advantage of the latent catalysts is demonstrated in the ring-opening metathesis polymerization of dicyclopentadiene, where the latency of 6 assures adequate mixing of catalyst and monomer before initiation. Trapping experiments suggests that the acid converts the 18-electron complexes into their corresponding highly olefin metathesis active 14-electron benzylidenes.  相似文献   

8.
Kinetic studies on ring-closing metathesis of unhindered and hindered substrates using phosphine and N-heterocyclic carbene (NHC)-containing ruthenium-indenylidene complexes (first and second generation precatalysts, respectively) have been carried out. These studies reveal an appealing difference, between the phosphine and NHC-containing catalysts, associated with a distinctive rate-determining step in the reaction mechanism. These catalysts have been compared with the benzylidene generation catalysts and their respective representative substrates. Finally, the reaction scope of the two most interesting precatalysts, complexes that contain tricyclohexylphosphine and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (SIMes), has been investigated for the ring-closing and enyne metathesis for a large range of olefins. Owing to their high thermal stability, the SIMes-based indenylidene complexes were more efficient than their benzylidene analogues in the ring-closing metathesis of tetrasubstituted dienes. Importantly, none of the indenylidene precatalysts were found to be the most efficient for all of the substrates, indeed, a complementary complex-to-substrate activity relationship was observed.  相似文献   

9.
10.
The decomposition of a series of ruthenium metathesis catalysts has been examined using methylidene species as model complexes. All of the phosphine-containing methylidene complexes decomposed to generate methylphosphonium salts, and their decomposition routes followed first-order kinetics. The formation of these salts in high conversion, coupled with the observed kinetic behavior for this reaction, suggests that the major decomposition pathway involves nucleophilic attack of a dissociated phosphine on the methylidene carbon. This mechanism also is consistent with decomposition observed in the presence of ethylene as a model olefin substrate. The decomposition of phosphine-free catalyst (H2IMes)(Cl)2Ru=CH(2-C6H4-O-i-Pr) (H2IMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) with ethylene was found to generate unidentified ruthenium hydride species. The novel ruthenium complex (H2IMes)(pyridine)3(Cl)2Ru, which was generated during the synthetic attempts to prepare the highly unstable pyridine-based methylidene complex (H2IMes)(pyridine)2(Cl)2Ru=CH2, is also reported.  相似文献   

11.
Quantitative energy-resolved collision-induced dissociation cross-sections by tandem ESI-MS provide absolute thermochemical data for phosphine binding energies in first- and second-generation ruthenium metathesis catalysts of 33.4 and 36.9 kcal/mol, respectively. Furthermore a study of the ring-closing metathesis in the second-generation system to liberate norbornene by forming the 14-electron reactive intermediate from the intramolecular pi-complex gives an estimate of the olefin binding energy to the 14-electron complex of around 18 kcal/mol, assuming a loose transition state. The results reported here are in remarkably good agreement with the latest DFT calculations using the M06-L functional.  相似文献   

12.
Two new dimethylvinyl carbene complexes, RuCl2(SIMes)(PPh3)CHCHC(CH3)2 and RuCl2(SIMes)(3BP)2CHCHC(CH3)2, were synthesized from RuCl2(PCp3)2CHCHC(CH3)2. Complex RuCl2(SIMes)(3BP)2CHCHC(CH3)2 does not suffer from the problem of incomplete initiation that has been observed for the other dimethylvinyl carbene complexes, as witnessed by complete and rapid reaction with ethyl vinyl ether. Acyclic diene metathesis (ADMET) polymerization of 1,9‐decadiene with these complexes was found to give polymers with chemical and thermal properties similar to those obtained with Schrock's molybdenum catalyst. These complexes are also catalysts for ring‐opening metathesis polymerization. The parent complex RuCl2(SIMes)(PCp3)CHCHC(CH3)2 was found to give polyoctenamer with high initial heats of fusion, suggesting a dependence of the “as formed” crystallinity of the polymer on the rate of the ROMP reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6134–6145, 2005  相似文献   

13.
Mechanism and activity of ruthenium olefin metathesis catalysts.   总被引:2,自引:0,他引:2  
This report details the effects of ligand variation on the mechanism and activity of ruthenium-based olefin metathesis catalysts. A series of ruthenium complexes of the general formula L(PR(3))(X)(2)Ru=CHR(1) have been prepared, and the influence of the substituents L, X, R, and R(1) on the rates of phosphine dissociation and initiation as well as overall activity for olefin metathesis reactions was examined. In all cases, initiation proceeds by dissociative substitution of a phosphine ligand (PR(3)) with an olefinic substrate. All of the ligands L, X, R, and R(1) have a significant impact on initiation rates and on catalyst activity. The origins of the observed substituent effects as well as the implications of these studies for the design and implementation of new olefin metathesis catalysts and substrates are discussed in detail.  相似文献   

14.
The synthesis of cholaphanes by ring closing metathesis (RCM) of 3α,7α,12α,24-tetraol allyl derivatives, obtained from cholic acid, was attempted. The reactions of tetraol 3,24-diallyl ether or 3,24-diacrylate were not satisfactory. However, diallyl derivatives of disteroidal 3,3′- or 24,24′-ortho-phthalates reacted smoothly affording cyclic dimers in good yields. In all the reactions studied, the E isomers of the macrocycles were obtained in excess.  相似文献   

15.
Sodium hydride activates ruthenium carbene complexes to catalyze hydrogenation reactions subsequent to ring closing olefin metathesis. Under these conditions, hydrogenation of cyclopentenols proceeds smoothly at ambient temperature and under 1 atm of hydrogen in toluene. An alternative protocol was developed that involves the formation of hydrogen in situ by reaction of excess sodium hydride with protic functional groups and water.  相似文献   

16.
The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or cosolvents, in a short period of time. We found that inhomogeneity of the reaction mixture does not prevent high conversion (70-95%) of the products in both reactions.  相似文献   

17.
18.
The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions.  相似文献   

19.
The development of a model system to study ruthenium-olefin complexes relevant to the mechanism of olefin metathesis is reported. Upon addition of 1,2-divinylbenzene to (H2IMes)(py2)(Cl)2Ru=CHPh (H2IMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene), two ruthenium-olefin adducts are formed. On the basis of 1H NMR spectroscopy experiments and X-ray crystallographic analysis, these complexes are assigned as side-bound isomers in which the olefin and H2IMes ligands are coordinated cis to each other. The dynamic interconversion of these two ruthenium complexes was determined to have a barrier of 19.1 +/- 0.1 kcal/mol.  相似文献   

20.
The synthesis of an ionic liquid-supported olefin metathesis catalyst derived from Grubb's ruthenium carbene complex is described. This new supported catalyst has been used in BMI.PF6 solvent, and this allowed success in solving the challenging problem of catalyst recycling. The IL catalyst in BMI.PF6 can be recovered and reused up to 10 consecutive cycles in RCM reactions of several dienes with excellent conversions. Moreover, the IL catalyst shows a remarkable stability in BMI.PF6 and can be stored several months without loss of activity. These results clearly demonstrate the importance of anchoring an imidazolium ionic liquid pattern to the catalyst to avoid its leaching from the BMI.PF6 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号