首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

2.
We study the photodetachment of electrons from sodium anions in room temperature liquid tetrahydrofuran (THF) using a new type of three-pulse pump-probe spectroscopy. Our experiments use two variably-time-delayed pulses for excitation in what is essentially a resonant 1+1 two-photon ionization: By varying the arrival time of the second excitation pulse, we can directly observe how solvent motions stabilize and trap the excited electron prior to electron detachment. Moreover, by varying the arrival times of the ionization (excitation) and probe pulses, we also can determine the fate of the photoionized electrons and the distance they are ejected from their parent Na atoms. We find that as solvent reorganization proceeds, the second excitation pulse becomes less effective at achieving photoionization, and that the solvent motions that stabilize the excited electron following the first excitation pulse occur over a time of approximately 450 fs. We also find that there is no spectroscopic evidence for significant solvent relaxation after detachment of the electron is complete. In combination with the results of previous experiments and molecular dynamics simulations, the data provide new insight into the role of the solvent in solution-phase electron detachment and charge-transfer-to-solvent reactions.  相似文献   

3.
Aiming for better understanding of the large complexity of excited-state processes in carotenoids, we have studied the excitation wavelength dependence of the relaxation dynamics in the carotenoid zeaxanthin. Excitation into the lowest vibrational band of the S2 state at 485 nm, into the 0-3 vibrational band of the S2 state at 400 nm, and into the 2B(u)+ state at 266 nm resulted in different relaxation patterns. While excitation at 485 nm produces the known four-state scheme (S2 --> hot S1 --> S1 --> S0), excess energy excitation led to additional dynamics occurring with a time constant of 2.8 ps (400 nm excitation) and 4.9 ps (266 nm excitation), respectively. This process is ascribed to a conformational relaxation of conformers generated by the excess energy excitation. The zeaxanthin S state was observed regardless of the excitation wavelength, but its population increased after 400 and 266 nm excitation, suggesting that conformers generated by the excess energy excitation are important for directing the population toward the S state. The S2-S1 internal conversion time was shortened from 135 to 70 fs when going from 485 to 400 nm excitation, as a result of competition between the S2-S1 internal conversion from the vibrationally hot S2 state and S2 vibrational relaxation. The S1 lifetime of zeaxanthin was within experimental error the same for all excitation wavelengths, yielding approximately 9 ps. No long-lived species have been observed after excitation by femtosecond pulses regardless of the excitation wavelength, but excitation by nanosecond pulses at 266 nm generated both zeaxanthin triplet state and cation radical.  相似文献   

4.
Ultrafast dissociation dynamics in OClO molecules is studied, induced by femtosecond laser pulses in the wavelength region from 386 to 409 nm, i.e., within the wide absorption band to the (approximately)A (2)A(2) electronic state. The decay of the initially excited state due to nonadiabatic coupling to the close lying (2)A(1) and (2)B(2) electronic states proceeds with a time constant increasing from 4.6 ps at 386 nm to 30 ps at 408.5 nm. Dissociation of the OClO molecule occurs after internal conversion within about 250 fs. In addition, a minor channel of direct excitation of the (2)A(1) electronic state has been identified, the lifetime of which increases from a few 100 fs at 386 nm to 2.2 ps at 408.5 nm. Simultaneous excitation of two neighboring vibrational bands in the (approximately)A (2)A(2) state leads to a coherent oscillation of the parent ion signal with the frequency difference of both modes.  相似文献   

5.
The relaxation of electronically excited I2, ICl and NO2 by CO has been investigated using a dye laser for electronic excitation (in the 590 nm region) and a cw CO laser for measuring the extent of CO product vibrational excitation. The CO molecules formed in these quenching reactions were found to carry very small fractions of electronic energies, in sharp contrast to the results observed in other E → V transfer reactions involving atomic species which carry comparable amounts of electronic energies.  相似文献   

6.
Transient infrared and visible absorption studies have been used to characterize vibrational and electronic dynamics of Prussian blue (PB) and ruthenium purple (RP) nanoparticles produced and characterized in AOT reverse micelles. Studies include excitation and probing with both infrared (near 2000 cm(-1)) and visible (800 nm) pulses. From IR pump-IR probe measurements of the CN stretching bands, vibrational population lifetimes are determined to be 32 ± 4 ps for PB and 44 ± 14 ps for RP. These times are longer than those for ferrocyanide (4 ps) and ruthenocyanide (4 ps) in normal water and are closer to the times for these species in heavy water (25-30 ps) and for ferrocyanide in formamide (43 ps). The PB and RP lifetimes are also longer than those (<15 ps) previously measured for CN stretching bands following intervalence excitation and back-electron transfer (BET) for dinuclear mixed-valence compounds containing Fe, Ru, and Os in heavy water and formamide [A. V. Tivansky, C. F. Wang, and G. C. Walker, J. Phys. Chem. A 107, 9051 (2003)]. In 800 nm pump-IR probe experiments on RP and PB, transient IR spectra and decay curves are similar to those with IR excitation; a ground state bleach and a red shifted (by ~40 cm(-1)) excited state decay are observed. These results for the visible pumping are consistent with rapid (<1 ps) BET resulting in population in the ground electronic state with vibrational excitation in the CN mode. In addition, transient absorption studies were performed for PB and RP probing with visible light using both visible and IR excitation. The early time response for the 800 nm pump-800 nm probe of PB exhibits an instrument-limited, subpicosecond bleach followed by an absorption, which is consistent with the previously reported results [D. C. Arnett, P. Vohringer, and N. F. Scherer, J. Am. Chem. Soc. 117, 12262 (1995)]. The absorption exhibits a biexponential decay with decay times of 9 and 185 ps, which could have been attributed to the CN band excitation indicated from 800 pump-IR probe results. However, IR pump-800 nm probe studies reveal that excitation of the CN band directly results in a decreased visible absorption that decays in 18 ps rather than an induced absorption at 800 nm. Characteristics of the IR pump-800 nm probe, especially that it induces a bleach instead of an absorption, unambiguously indicate that the transient absorption from the 800 nm pump-800 nm probe is dominated by states other than the CN bands and is attributed to population in other, probably lower frequency, vibrational modes excited following visible excitation and rapid BET.  相似文献   

7.
Abstract— Generation of the nonequilibrium distribution of excited vibrational modes stimulated by electronic energy relaxation in pigment-protein complexes of the light-harvesting antenna of some photosynthetic systems is discussed in this paper. It is shown that the simplest approach to this problem can be achieved by introducing a local temperature, which is a good parameter for describing the nonequilibrium distribution of the local vibrational modes of the pigment molecules and its nearest protein surroundings. Then the transient absorption kinetics is determined by the kinetics of the excitation relaxation as I well as the heating/cooling of the local vibrational modes. Experimentally, this process can be investigated in the i singlet-singlet annihilation conditions that create the i greatest amount of local heating. The systems under in-: vestigation are trimers of bacteriochlorophyll a contain- i ing pigment-protein complexes from the green sulfur i bacterium Chlorobium tepid urn (so-called FMO complexes) and aggregates of the light-harvesting complexes of photosystem II (LHC2) from higher plants containing chlorophyll alb. It was shown that at 77 K the heat redistribution kinetics in LHC2 is on the order of 3040 ps and in FMO it is approximately equal to 26 ps. The local heating effect at room temperature is less pronounced; however, by using longer pulses and at higher excitation energies (on the order of a magnitude higher), an additional kinetics of hundreds of ps, also related to the heating/cooling process, was observed.  相似文献   

8.
Optimal control theory is employed for the task of minimizing the excited-state population of a dye molecule in solution. The spectrum of the excitation pulse is contained completely in the absorption band of the molecule. Only phase control is studied which is equivalent to optimizing the transmission of the pulse through the medium. The molecular model explicitly includes two electronic states and a single vibrational mode. The other degrees of freedom are classified as bath modes. The surrogate Hamiltonian method is employed to incorporate these bath degrees of freedom. Their influence can be classified as electronic dephasing and vibrational relaxation. In accordance with experimental results, minimal excitation is associated with a negatively chirped pulses. Optimal pulses with more complex transient structure are found to be superior to linearly chirped pulses. The difference is enhanced when the fluence is increased. The improvement degrades when dissipative effects become more dominant.  相似文献   

9.
Time-resolved photoelectron spectroscopy was used to obtain new information about the dynamics of electronic relaxation in gas-phase indole and 5-hydroxyindole following UV excitation with femtosecond laser pulses centred at 249 nm and 273 nm. Our analysis of the data was supported by ab initio calculations at the coupled cluster and complete-active-space self-consistent-field levels. The optically bright (1)L(a) and (1)L(b) electronic states of (1)ππ? character and spectroscopically dark and dissociative (1)πσ? states were all found to play a role in the overall relaxation process. In both molecules we conclude that the initially excited (1)L(a) state decays non-adiabatically on a sub 100 fs timescale via two competing pathways, populating either the subsequently long-lived (1)L(b) state or the (1)πσ? state localised along the N-H coordinate, which exhibits a lifetime on the order of 1 ps. In the case of 5-hydroxyindole, we conclude that the (1)πσ? state localised along the O-H coordinate plays little or no role in the relaxation dynamics at the two excitation wavelengths studied.  相似文献   

10.
Two-quantum photochemical processes, taking place under high-intensity UV laser irradiation of biomolecules in aqueous solution, have been studied with thymine, one of the DNA bases, as an example. It has been found that two-step high-energy excitation of thymine results not only in its ionization and relaxation but also in electronic energy transfer to the solvent, water. The probabilities of primary photoprocesses from the high-lying electronic vibrational states of thymine have been measured. It has been shown that the radicals of the solvent, water, formed by its sensitized photodecomposition and also by direct two-photon ionization and dissociation make the basic contribution to the formation of the final chemically stable products in the picosecond UV photolysis of thymine in aqueous solution.  相似文献   

11.
The optimal control of the vibrational excitation of the hydrogen molecule [Balint-Kurti et al., J. Chem. Phys. 122, 084110 (2005)] utilizing polarization forces is extended to three dimensions. The polarizability of the molecule, to first and higher orders, is accounted for using explicit ab initio calculations of the molecular electronic energy in the presence of an electric field. Optimal control theory is then used to design infrared laser pulses that selectively excite the molecule to preselected vibrational-rotational states. The amplitude of the electric field of the optimized pulses is restricted so that there is no significant ionization during the process, and a new frequency sifting method is used to simplify the frequency spectrum of the pulse. The frequency spectra of the optimized laser pulses for processes involving rotational excitation are more complex than those relating to processes involving only vibrational excitation.  相似文献   

12.
Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).  相似文献   

13.
Laser photoelectron spectra have been obtained following the preparation of eight vibrational states in S(1) toluene. For four of the vibrational states (up to approximately 550 cm(-1) excess energy) excitation and ionization with nanosecond laser pulses give rise to photoelectron spectra with well-resolved vibrational peaks. For the other states (>750 cm(-1) excess energy) the photoelectron spectra show a loss of structure when nanosecond pulses are used, as a result of intramolecular dynamics [see Whiteside et al., J. Chem. Phys. 123, 204317 (2005), following paper]. A number of vibrational peaks in the photoelectron spectra are assigned, and we find that the common series of ion vibrational peaks observed following the ionization of p-fluorotoluene in various S(1) vibrational states is not reproduced in toluene.  相似文献   

14.
Resonance-enhanced multiphoton ionization photoelectron spectroscopy has been applied to study the electronic spectroscopy and relaxation pathways among the 3p and 3s Rydberg states of trimethylamine. The experiments used femtosecond and picosecond duration laser pulses at wavelengths of 416, 266, and 208 nm and employed two-photon and three-photon ionization schemes. The binding energy of the 3s Rydberg state was found to be 3.087 +/- 0.005 eV. The degenerate 3p x, y states have binding energies of 2.251 +/- 0.005 eV, and 3p z is at 2.204 +/- 0.005 eV. Using picosecond and femtosecond time-resolved experiments we spectrally and temporally resolved an intricate sequence of energy relaxation pathways leading from the 3p states to the 3s state. With excitation at 5.96 eV, trimethylamine is found to decay from the 3p z state to 3p x, y in 539 fs. The decay to 3s from all the 3p states takes place with a 2.9 ps time constant. On these time scales, trimethylamine does not fragment at the given internal energies, which range from 0.42 to 1.54 eV depending on the excitation wavelength and electronic state.  相似文献   

15.
We report the first experimental demonstration of vibrational mode-dependent enhancement in photodissociation and photoionization of a seven atom molecule, methylamine (CH(3)NH(2)). The fundamental C-H stretches and the overtones or combinations of CH(3) bends were prepared via stimulated Raman excitation (SRE) prior to their 243.135 nm one-photon dissociation or two-photon ionization. The photodissociation or photoionization of the vibrationally excited molecules was achieved via 10 ns delayed or temporally overlapping SRE and UV pulses, respectively. It is shown that bending modes are more effective than stretches in promoting photodissociation and photoionization, since their UV excitation is favored by larger Franck Condon factors. This behavior provides clear evidence for vibrational mode-dependence in a relatively large molecule with a torsional degree of freedom, indicating that these modes survive intramolecular vibrational redistribution on a time scale considerably longer than hitherto inferred from previous studies.  相似文献   

16.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   

17.
The vibrational energy dissipation process of the ground-state azulene in supercritical xenon, carbon dioxide, and ethane has been studied by the transient grating spectroscopy. In this method, azulene in these fluids was photoexcited by two counterpropagating subpicosecond laser pulses at 570 nm, which created a sinusoidal pattern of vibrationally hot ground-state azulene inside the fluids. The photoacoustic signal produced by the temperature rise of the solvent due to the vibrational energy relaxation of azulene was monitored by the diffraction of a probe pulse. The temperature-rise time constants of the solvents were determined at 383 and 298 K from 0.7 to 2.4 in rho(r), where rho(r) is the reduced density by the critical density of the fluids, by the fitting of the acoustic signal based on a theoretical model equation. In xenon, the temperature-rise time constant was almost similar to the vibrational energy-relaxation time constant of the photoexcited solute determined by the transient absorption measurement [D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996)] at the same reduced density irrespective of the solvent temperature. On the other hand, the temperature-rise time constants in ethane were larger than the vibrational energy-relaxation time constants by a factor of about 2. In carbon dioxide, the difference was small. From these results, the larger time constants of the solvent temperature rise than those of the vibrational energy relaxation in ethane and carbon dioxide were interpreted in terms of the vibrational-vibrational (V-V) energy transfer between azulene and solvent molecules and the vibrational-translational (V-T) energy transfer between solvent molecules. The contribution of the V-V energy transfer process against the V-T energy transfer process has been discussed.  相似文献   

18.
《Comptes Rendus Chimie》2015,18(5):516-524
Density functional theory (DFT) is applied to obtain absorption spectra at THz frequencies for molecular clusters of H2O. The vibrational modes of the clusters are calculated. Coupling among molecular vibrational modes explains their spectral features associated with THz excitation. THz excitation is associated with vibrational frequencies which are here calculated within the DFT approximation of electronic states. This is done for both isolated molecules and collections of molecules in a cluster. The principal result of the paper is that a crystal-like cluster of 38 water molecules together with a continuum solvent background is sufficient to replicate well the experimental vibrational frequencies.  相似文献   

19.
Studies of vibrational energy flow in various polar and nonpolar molecules that follows the ultrafast excitation of the CH and OH stretch fundamentals, modeled using semiclassical methods, are reviewed. Relaxation rates are calculated using Landau-Teller theory and a time-dependent method, both of which consider a quantum mechanical solute molecule coupled to a classical bath of solvent molecules. A wide range of decay rates are observed, ranging from 1 ps for neat methanol to 50 ps for neat bromoform. In order to understand the flow rates, it is argued that an understanding of the subtle mixing between the solute eigenstates is needed and that solute anharmonicities are critical to facilitating condensed phase vibrational relaxation. The solvent-assisted shifts of the solute vibrational energy levels are seen to play a critical role of enhancing or decreasing lifetimes.  相似文献   

20.
The excited‐state dynamics of ferric cytochrome c (Cyt c), an important electron‐transfer heme protein, in acidic to alkaline medium and in its unfolded form are investigated by using femtosecond pump–probe spectroscopy, exciting the heme and Tryptophan (Trp) to understand the electronic, vibrational, and conformational relaxation of the heme. At 390 nm excitation, the electronic relaxation of heme is found to be ≈150 fs at different pH values, increasing to 480 fs in the unfolded form. Multistep vibrational relaxation dynamics of the heme, including fast and slow processes, are observed at pH 7. However, in the unfolded form and at pH 2 and 11, fast phases of vibrational relaxation dominate, revealing the energy dissipation occurring through the covalent bond interaction between the heme and the nearest amino acids. A significant shortening of the excited‐state lifetime of Trp is observed at various pH values at 280 nm excitation due to resonance energy transfer to the heme. The longer time constant (25 ps) observed in the unfolded form is attributed to a complete global conformational relaxation of Cyt c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号