首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum atoms react with tetrachlorofluoromethanes upon laser-ablation and with ultraviolet irradiation to form dihalomethylidene platinum dihalide complexes, CX(2)=PtX(2). These new molecules are identified from carbon-13 and chlorine isotopic shifts, displacements in functional group frequencies as chlorine is replaced with fluorine, and comparison to frequencies calculated by density functional theory. The PtC bond lengths calculated here, 1.810 to 1.816 A, are shorter than analogous bond lengths measured earlier for Pt(II) carbene complexes (1.943-1.950 A). The computed effective Pt-C bond orders range from 1.41 to 1.70 as chlorine is replaced by fluorine since the more electronegative halogen appears to concentrate the Pt 5d orbitals and make them bond better with carbon. These platinum methylidene complexes thus have a substantial amount of double bond character from d(pi)-p(pi) bonding.  相似文献   

2.
Using a series of Ir(I) and Rh(I) ketene complexes, conclusions about the structure and bonding of complexes of the fundamentally important ketene ligand class are reached. In a unique comparison of X-ray structures of the same metal fragment to ketenes in both the eta(2)-(C,C) and the eta(2)-(C,O) binding mode, the Ir-Cl bond distances in complexes of trans-Cl(Ir)[P(i-Pr)(3)](2) to phenylketene [4, eta(2)-(C,C)] and diphenylketene [2a, eta(2)-(C,O)] are 2.371(3) and 2.285(2) A, respectively. This would be consistent with greater trans influence of a ketene ligand bound to a metal through its C=C bond than one connected by its C=O bond. Back-bonding of Ir(I) and Rh(I) to diphenylketene was assessed using trans-Cl(M)[P(i-Pr)(3)](2)[eta(2)-(C,O)-diphenylketene] (2a and 2d). Most bond lengths and angles are identical, but slightly greater back-bonding by Ir(I) is suggested by the somewhat greater deformation of the ketene C=C=O system [C-C-O angles are 136.6(4) and 138.9(4) in the Ir and Rh cases 2a and 2d, respectively]. Syntheses of new labeled ketenes Ph(2)C=(13)C=O and Ph(2)C=C=(18)O and their Ir(I) and Rh(I) complexes are reported, along with the generation of an Ir(I) complex of PhCH=(13)C=O. The effects of isotopic substitution on infrared absorption data for ketene complexes are presented for the first time. Preliminary normal coordinate mode analysis allowed definitive assignment of absorptions ascribed to the C-O stretching frequencies of coordinated ketenes, which are near the absorptions for aromatic ring systems commonly found as substituents on ketenes. For free diphenylketene and four of its complexes and a phenylketene complex characterized by X-ray diffraction, the magnitude of the (13)C-(13)C coupling between the two ketene carbons is correlated to carbon-carbon bond distance.  相似文献   

3.
The first set of five heterobimetallic MM′(form)4 (form=formamidinate) complexes containing a BiRh core has been successfully synthesized. The Bi?Rh bond lengths lie between 2.5196(6) and 2.572(2) Å, consistent with Bi?Rh single bonds. All complexes have rich electrochemistry, with the [BiRh]4+/5+ redox couples spanning approximately 700 mV and showing a strong correlation to remote ligand substitution. Visible spectroscopy showed two features for complexes 1 – 5 at approximately 459 and 551 nm, unique to BiRh paddlewheel complexes that are attributed to LMCT bands into the Bi?Rh σ* orbital. The large spin–orbit coupling (SOC) of Bi creates a massive Bi?Rh magnetic anisotropy, Δχ, approximately ?4800×10?36 m3molecule?1, which is the largest value reported for any single bond to date.  相似文献   

4.
The photoinduced dissociation of a W-CN bond in [W(CN)8]4- in an aqueous solution under ambient conditions, in conjunction with the uptake of molecular oxygen, affords the W(VI) mixed-ligand complex anion [W(CN)(7)(eta2-O2)]3-, conveniently isolable as its [PPh4+] salt. Although research into the chemistry of cyanomolybdates and cyanotungstates has been pursued with great interest and vigor over several decades, there is a paucity of structurally characterized cyano-peroxo complexes of Mo and W. The side-on coordination mode of the peroxo moiety in [W(CN)7(eta2-O2)]3- has been ascertained with X-ray crystal structure determination [d(O-O) = 1.41 A; peroxo bite angle: 41.0 degrees ] and corroborated with vibrational spectroscopy [nu(O-O) = 915 cm(-1)]. The complex ion exhibits trapezoidal tridecahedral geometry and represents the new class of nine-coordinate complexes with one bidentate and seven monodentate ligands. Cyclic voltammetry shows a reversible redox behavior of [W(CN)7(eta2-O2)]3- in CH3CN with its standard reduction potential equal to 1.130 V. Generally, interest in atmospheric oxygen derives from the versatility of this molecule as a ligand and oxidant and extends to the physicochemical features it imparts to transition metals such as copper and iron in biological oxygen carriers.  相似文献   

5.
The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-alkylperoxo model complex [Fe(TPA)(OH(x))(OO(t)Bu)](x+) (1; TPA = tris(2-pyridylmethyl)amine, (t)Bu = tert-butyl, x = 1 or 2) are explored. The vibrational spectra of 1 show three peaks that are assigned to the O-O stretch (796 cm(-1)), the Fe-O stretch (696 cm(-)(1)), and a combined O-C-C/C-C-C bending mode (490 cm(-1)) that is mixed with upsilon(FeO). The corresponding force constants have been determined to be 2.92 mdyn/A for the O-O bond which is small and 3.53 mdyn/A for the Fe-O bond which is large. Complex 1 is characterized by a broad absorption band around 600 nm that is assigned to a charge-transfer (CT) transition from the alkylperoxo pi*(upsilon) to a t(2g) d orbital of Fe(III). This metal-ligand pi bond is probed by MCD and resonance Raman spectroscopies which show that the CT state is mixed with a ligand field state (t(2g) --> e(g)) by configuration interaction. This gives rise to two intense transitions under the broad 600 nm envelope with CT character which are manifested by a pseudo-A term in the MCD spectrum and by the shapes of the resonance Raman profiles of the 796, 696, and 490 cm(-1) vibrations. Additional contributions to the Fe-O bond arise from sigma interactions between mainly O-O bonding donor orbitals of the alkylperoxo ligand and an e(g) d orbital of Fe(III), which explains the observed O-O and Fe-O force constants. The observed homolytic cleavage of the O-O bond of 1 is explored with experimentally calibrated density functional (DFT) calculations. The O-O bond homolysis is found to be endothermic by only 15 to 20 kcal/mol due to the fact that the Fe(IV)=O species formed is highly stabilized (for spin states S = 1 and 2) by two strong pi and a strong sigma bond between Fe(IV) and the oxo ligand. This low endothermicity is compensated by the entropy gain upon splitting the O-O bond. In comparison, Cu(II)-alkylperoxo complexes studied before [Chen, P.; Fujisawa, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 10177] are much less suited for O-O bond homolysis, because the resulting Cu(III)=O species is less stable. This difference in metal-oxo intermediate stability enables the O-O homolysis in the case of iron but directs the copper complex toward alternative reaction channels.  相似文献   

6.
The two dimethyl sulfoxide solvated rhodium(III) compounds, [Rh(dmso-κO)(5)(dmso-κS)](CF(3)SO(3))(3) (1 & 1* at 298 K and 100 K, respectively) and [Rh(dmso-κO)(3)(dmso-κS)(2)Cl](CF(3)SO(3))(2) (2), crystallize with orthorhombic unit cells in the space group Pna2(1) (No. 33), Z = 4. In the [Rh(dmso)(6)](3+) complex with slightly distorted octahedral coordination geometry, the Rh-O bond distance is significantly longer with O trans to S, 2.143(6) ? (1) and 2.100(6) ? (1*), than the mean Rh-O bond distance with O trans to O, 2.019 ? (1) and 2.043 ? (1*). In the [RhCl(dmso)(5)](3+) complex, the mean Rh-O bond distance with O trans to S, 2.083 ?, is slightly longer than that for O trans to Cl, 2.067(4) ?, which is consistent with the trans influence DMSO-κS > Cl > DMSO-κO of the opposite ligands. Raman and IR absorption spectra were recorded and analyzed and a complete assignment of the vibrational bands was achieved with support by force field calculations. An increase in the Rh-O stretching vibrational frequency corresponded to a decreasing trans-influence from the opposite ligand. The Rh-O force constants obtained were correlated with the Rh-O bond lengths, also including previously obtained values for other M(dmso)(6)(3+) complexes with trivalent metal ions. An almost linear correlation was obtained for the MO stretching force constants vs. the reciprocal square of the MO bond lengths. The results show that the metal ion-oxygen bonding of dimethyl sulfoxide ligands is electrostatically dominated in those complexes and that the stretching force constants provide a useful measure of the relative trans-influence of the opposite ligands in hexa-coordinated Rh(III)-complexes.  相似文献   

7.
《Vibrational Spectroscopy》2000,22(1-2):63-73
Intermolecular hydrogen bonding interactions in stereoisomeric α-substituted cinnamic acid methyl esters (methyl 2,3-diphenylpropenoate, methyl 2-phenyl-3-(2′-methoxyphenyl)-propenoate, methyl 2-(2′-methoxyphenyl)-3-phenylpropenoate and methyl-2,3-bis(2′-methoxyphenyl)-propenoate) were studied by FT–IR spectroscopy and model calculations at the semi-empirical quantum chemical level of theory. Intermolecular hydrogen bonds of C–H…O types were found to be general in the solid state, but rare in solution. In this hydrogen bond the carbon may be part of either aromatic ring or the olefinic bond. The hydrogen bond acceptor may be the carbonyl oxygen or the oxygen in the methoxy substituent. Modeling helped in determining probable hydrogen bonding sites and their positions and provided with approximate geometric parameters (bond lengths and angles). Pointing out differences between the stereoisomers was also possible.  相似文献   

8.
Adducts resulting from the interaction between molecular oxygen and β-diketiminato-copper and nickel complexes have been recently described in the literature as peroxo and superoxo complexes, respectively. The nature of the interaction is analyzed by means of DDCI calculations and an orthogonal valence bond reading of the ground state wavefunction for each system. Our results reveal that there is not any substantial difference between these systems, both presenting a marked leading superoxo nature, which is in line with the fact that LCu-O(2) and LNi-O(2) adducts present similar O-O distances and quite close O-O stretching vibration modes.  相似文献   

9.
The properties of reduced rutile TiO2(110) surfaces, as well as the adsorption, diffusion, and dissociation of molecular oxygen are investigated by means of density functional theory. The O2 molecule is found to bind strongly to bridging oxygen vacancies, attaining a molecular state with an expanded O-O bond of 1.44 A. The molecular oxygen also binds (with somewhat shortened bond lengths) to the fivefold coordinated Ti atoms in the troughs between the bridging oxygen rows, but only when vacancies are present somewhere in the surface. In all cases, the magnetic moment of O2 is lost upon adsorption. The expanded bond lengths reveal together with inspection of electron density and electronic density of state plots that charging of the adsorbed molecular oxygen is of key importance in forming the adsorption bond. The processes of O2 diffusion from a vacancy to a trough and O2 dissociation at a vacancy are both hindered by relative large barriers. However, we find that the presence of neighboring vacancies can strongly affect the ability of O2 to dissociate. The implications of this in connection with diffusion of the bridging oxygen vacancies are discussed.  相似文献   

10.
Structural properties of the acylperoxo complexes [(Salen)Mn(III)RCO(3)] (2) and [(Salen)Mn(IV)RCO(3)] (3), the critical intermediates in the Kochi-Jacobsen-Katsuki reaction utilizing organic peracids or O(2)/aldehydes as oxygen source, have been studied with the density functional theory. Four distinct isomers, cis(O,N), cis(N,O), cis(N,N), and trans, of these complexes have been located. The isomer 2-cis(O,N) in its quintet ground state, and nearly degenerate isomers 3-cis(O,N) and 3-cis(N,O) in their quartet ground states are found to be the lowest in energy among the other isomers. The O-O bond cleavage in the cis(O,N), cis(N,O), and trans isomers of 2 and 3 has been elucidated. In complex 3, the O-O bond is inert. On the contrary, in complex 2, the O-O bond cleaves via two distinct pathways. The first pathway occurs exclusively on the quintet potential energy surface (PES) and corresponds to heterolytic O-O bond scission coupled with insertion of an oxygen atom into an Mn-N(Salen) bond to form 2-N-oxo species; this pathway has the lowest barrier of 14.9 kcal/mol and is 15.6 kcal/mol exothermic. The second pathway is tentatively a spin crossover pathway. In particular, for 2-cis(O,N) and 2-cis(N,O) the second pathway proceeds through a crucial minimum on the seam of crossing (MSX) between the quintet and triplet PESs followed by heterolytic O-O cleavage on the triplet PES, and produces unusual triplet 2-cis(O,N)- and 2-cis(N,O)-oxo ([(Salen)Mn(V)(O)RCO(2)]) species; this pathway requires 12.8 kcal/mol and is 1.4 kcal/mol endothermic. In contrast, for the 2-trans isomer, spin crossing is less crucial and the O-O cleavage proceeds homolytically to generate 2-trans-oxo [(Salen)Mn(IV)(O)] species with RCO(2) radical; this pathway, however, cannot compete with that in 2-cis because it needs 21.9 kcal/mol for activation and is 15.3 kcal/mol endothermic. In summary, the O-O cleavage occurs predominantly in the 2-cis complexes, and may proceed either through pure high spin or spin crossover heterolytic pathway to produce 2-cis-oxo and 2-N-oxo species.  相似文献   

11.
Previously reported structure-activity relationships have shown two features for effective antitumor activity of titanium beta-diketone complexes: (a) ligand asymmetry and (b) the presence of planar substitutents on the ligand. Mono- and dinuclear derivatives, studied with diffraction and DFT methods show that (a) is consistent with different Ti-O(beta-diketonato) bond lengths, which are longer than Ti-O(oxo) and Ti-O(alkoxy) ones. pi-pi features observed in dinuclear derivatives correlate with strong reactivity of related complexes with DNA and support DNA intercalation by such planar groups, in agreement with (b). Large variation for Ti-O bond lengths and Ti-O-C bond angles in the ethoxy moiety is associated with the titanium withdrawing effect and oxygen bonding s character; it is confirmed through exploration of the Cambridge crystallographic database. This ethoxy geometrical flexibility also suggests versatile accommodation in protein pockets and/or other biological targets. Electrospray ionization mass spectrometry (ESI-MS) spectra show formation of di- and trinuclear Ti-4-acyl-5-pyrazolonato cationic oligomers. Hydrolysis/oligomerization is also described by NMR results.  相似文献   

12.
Treatment of M[N(SiMe3)2]3 (M = U, Pu (An); La, Ce (Ln)) with NH(EPPh2)2 and NH(EPiPr2)2 (E = S, Se), afforded the neutral complexes M[N(EPR2)2]3 (R = Ph, iPr). Tellurium donor complexes were synthesized by treatment of MI3(sol)4 (M = U, Pu; sol = py and M = La, Ce; sol = thf) with Na(tmeda)[N(TePiPr2)2]. The complexes have been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An-E bond lengths are shorter than the Ln-E bond lengths for metal ions of similar ionic radii, consistent with an increase in covalent interactions in the actinide bonding relative to the lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softness of the chalcogen donor atom. The DFT calculations for the model systems correlate well with experimentally determined metrical parameters. They indicate that the enhanced covalency in the M-E bond as group 16 is descended arises mostly from increased metal d-orbital participation. Conversely, an increase in f-orbital participation is responsible for the enhancement of covalency in An-E bonds compared to Ln-E bonds. The fundamental and practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized.  相似文献   

13.
The (17)O NMR chemical shifts of several previously characterized mono- and diperoxo complexes of vanadium(V), molybdenum(VI), tungsten(VI), and titanium(IV) were measured. Compilation of NMR, electronic, and vibrational spectroscopic data and metric parameters for these and other complexes permits us to draw correlations among (17)O peroxo chemical shift, the electronic charge transfer band, the O-O vibrational frequency, and the length of the oxygen-oxygen bond. Monoperoxo complexes exhibit (17)O chemical shifts of 500-660 ppm, while those of diperoxo complexes fall in the range 350-460 ppm. The correlation of chemical shift with the inverse ligand-to-metal charge transfer energy from electronic spectra is consistent with a formalism developed by Ramsey, despite the variations in the metals, the number of peroxo ligands, and the nature of the remaining ligands in the coordination sphere. Vibrational frequency and length of the oxygen-oxygen bond also correlate with the inverse ligand-to-metal charge transfer energy. Monoperoxo complexes show values of nu(O)(-)(O) above 900 cm(-)(1) and O-O distances in the range 1.43-1.46 ?. Diperoxo complexes have values of nu(O)(-)(O) below 900 cm(-)(1) and O-O distances of 1.46-1.53 ?. The assignment of nu(O)(-)(O) = 910 cm(-)(1) for the infrared spectrum of ammonium aquaoxoperoxo(pyridine-2,6-dicarboxylato)vanadium(V), NH(4)[VO(O(2))(dipic)(H(2)O)], was made by isotopic substitution. The stretching frequency and length of the O-O bond for peroxo complexes are explained in terms of sigma-bonding between a metal d orbital and a peroxo pi orbital. A comparison of the spectroscopic properties of these complexes with their reactivity as oxidizing agents suggests that the strength of the O-O bond is an important factor. The most reactive species exhibit lambda(max) values below 400 nm, stretching frequencies below 900 cm(-)(1), and (17)O chemical shifts below 600 nm. These generalizations may permit the prediction of peroxometal reactivity from spectroscopic information.  相似文献   

14.
The complexes of glyoxal (Gly), methylglyoxal (MGly), and diacetyl (DAc) with water have been studied using Fourier transform infrared (FTIR) matrix isolation spectroscopy and MP2 calculations with 6-311++G(2d,2p) basis set. The analysis of the experimental spectra of the Gly(MGly,DAc)/H2O/Ar matrixes indicates formation of one Gly...H2O complex, three MGly...H2O complexes, and two DAc...H2O ones. All the complexes are stabilized by the O-H...O(C) hydrogen bond between the water molecule and carbonyl oxygen as evidenced by the strong perturbation of the O-H, C=O stretching vibrations. The blue shift of the CH stretching vibration in the Gly...H2O complex and in two MGly...H2O ones suggests that these complexes are additionally stabilized by the improper C-H...O(H2) hydrogen bonding. The theoretical calculations confirm the experimental findings. They evidence the stability of three hydrogen-bonded Gly...H2O and DAc...H2O complexes and six MGly...H2O ones stabilized by the O-H...O(C) hydrogen bond. The calculated vibrational frequencies and geometrical parameters indicate that one DAc..H2O complexes, two Gly...H2O, and three MGly...H2O ones are additionally stabilized by the improper hydrogen bonding between the C-H group and water oxygen. The comparison of the theoretical frequencies with the experimental ones allowed us to attribute the calculated structures to the complexes present in the matrixes.  相似文献   

15.
The reaction of vinyl radical with molecular oxygen in solid argon has been studied using matrix isolation infrared absorption spectroscopy. The vinyl radical was produced through high frequency discharge of ethylene. The vinyl radical reacted with oxygen spontaneously on annealing to form the vinylperoxy radical C(2)H(3)OO with the O-O bond in a trans position relative to the C-C bond, which is characterized by O-O stretching and out-of-plane CH(2) bending vibrations at 1140.7 and 875.5 cm(-1). The vinylperoxy radical underwent visible photon-induced dissociation to the CH(2)OH(CO) complex or CH(2)OH+CO, which has never been considered in previous studies. The CH(2)OH(CO) product was predicted to be more thermodynamically accessible than the previously reported major HCO+H(2)CO channel, and is most likely produced by hydrogen atom transfer from the first-formed H(2)CO-HCO pair in solid argon.  相似文献   

16.
Electron density redistribution and quadrupole coupling constants (QCC) in XY···NH3 complexes were analyzed. Data on bond lengths and QCC calculated by the BHandHLYP/aug-cc-pVTZ were used to compare the results obtained with experimental data of rotational spectroscopy. Analysis of QCC values and of the results of approximation of the natural bonding orbitals reveals prevailing electrostatic nature of intermolecular interaction.  相似文献   

17.
Co-O and O-O bond stretching frequencies have been determined by oxygen isotopic substitution in a series of cobalt(III)—salen complexes. These all are of the binuclear type [Co(salen)L]2O2, with L being a basic ligand occupying an axial coordination position. The nature of the oxygen binding and the influence of the axial ligands are discussed.  相似文献   

18.
Reactions of laser-ablated group 3 metal atoms with methyl halides have been carried out in excess of Ar during condensation and the matrix infrared spectra studied. The metals are as effective as other early transition metals in providing insertion products (CH3-MX) and higher oxidation state methylidene complexes (CH2-MHX) (X = F, Cl, Br) following alpha-hydrogen migration. Unlike the cases of the group 4-6 metals, the calculated methylidene complex structures show little evidence for agostic distortion, consistent with the previously studied group 3 metal methylidene hydrides, and the C-M bond lengths of the insertion and methylidene complexes are comparable to each other. However, the C-Sc bond lengths are 0.013, 0.025, and 0.029 A shorter for the CH2-ScHX complexes, respectively, and the spin densities are consistent with weak C(2p)-Sc(3d) pi bonding. The present results reconfirm that the number of valence electrons on the metal is important for agostic interaction in simple methylidene complexes.  相似文献   

19.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

20.
We have studied oxidation reactions using a synthetic heme-thiolate (SR complex) in order to ascertain the contributions of multiple intermediates derived from heme-thiolate to the oxygen atom transfer reaction to substrate. First, degradation of peroxyphenylacetic acid (PPAA) was examined in the presence of various substrates. The O-O bond cleavage mode of PPAA was clearly dependent on the reactivity of the substrate, and an easily oxidizable substrate enhanced heterolytic O-O bond cleavage. Second, competitive oxidations of cyclooctane and cyclooctene were carried out with various peroxybenzoic acids containing a series of substituents at the para-position as an oxygen source. The ratios of alkane hydroxylation rate/alkene epoxidation rate were dependent on the nature of the para-substituent of the oxidant. We conclude that substrate and oxidant interact with each other during the oxygen atom transfer reaction, that is, oxidation reaction occurs before O-O bond cleavage, even in the reaction catalyzed by heme-thiolate, which is considered to promote O-O bond cleavage. The results of an (18)O-incorporation study that is frequently performed to determine the active intermediates derived from iron porphyrins were consistent with this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号