首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, I will present an alternative approach to the Bethe or cactus lattice approximation, widely employed in the theory of cooperative phenomena. This approach relies on a variational free energy, which is equivalent to the Bethe free energy in that it has the same stationary points, but allows one to simplify analytical calculations, since it is a function of only single-site probability distributions, in the same way as an ordinary mean-field (Bragg-Williams) free energy. As an application, I shall discuss a derivation of closed-form equations for critical points in Ising-like models. Moreover, I will suggest a rule of thumb to choose the cactus lattice connectivity yielding the best approximation for the corresponding model defined on an ordinary lattice. PACS Numbers: 05.20.-y, 05.50.+q, 05.70.Fh, 64.60.-i, 64.60.Cn  相似文献   

2.
Invariant linearization criteria for square systems of second-order quadratically nonlinear ordinary differential equations (ODEs) that can be represented as geodesic equations are extended to square systems of ODEs cubically nonlinear in the first derivatives. It is shown that there are two branches for the linearization problem via point transformations for an arbitrary system of second-order ODEs and its reduction to the simplest system. One is when the system is at most cubic in the first derivatives. One obtains the equivalent of the Lie conditions for such systems. We explicitly solve this branch of the linearization problem by point transformations in the case of a square system of two second-order ODEs. Necessary and sufficient conditions for linearization to the simplest system by means of point transformations are given in terms of coefficient functions of the system of two second-order ODEs cubically nonlinear in the first derivatives. A consequence of our geometric approach of projection is a rederivation of Lie's linearization conditions for a single second-order ODE and sheds light on more recent results for them. In particular we show here how one can construct point transformations for reduction to the simplest linear equation by going to the higher space and just utilizing the coefficients of the original ODE. We also obtain invariant criteria for the reduction of a linear square system to the simplest system. Moreover these results contain the quadratic case as a special case. Examples are given to illustrate our results.  相似文献   

3.
We investigate the phase jitter in long-haul optical transmission systems with periodic dispersion management and amplification. We compare different dispersion-managed soliton systems and a conventional soliton system having the same pulse width and path-averaged dispersion. Using the variational method, we derive the ordinary differential equations for the pulse parameters perturbed by amplifier noise and hence calculate the phase jitter. We verify the analytical results by numerically solving the nonlinear Schrödinger equation using split-step Fourier algorithm. The results suggest that the reduction of nonlinear phase noise in dispersion-managed soliton systems is possible compared to a conventional soliton system. It is also revealed that the phase noise is enhanced in stronger dispersion-managed systems. We also explore the phase noise effect in dispersion-managed quasi-linear systems and find that phase jitter is mitigated in highly dispersive fibers.  相似文献   

4.
Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.  相似文献   

5.
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.  相似文献   

6.
7.
We show how one can construct conservation laws of equations that are not variational but are Euler–Lagrange in part using Noether-type symmetries associated with partial Lagrangians. These Noether-type symmetries are, usually, not symmetries of the system. The resultant construction of the conservation law resorts to a formula equivalent to Noether’s theorem. A variety of examples are given.  相似文献   

8.
In this paper, we propose a variational formulation to study the singular evolution equations that govern the dynamics of surface modulations on crystals below the roughening temperature. The basic idea of the formulation is to expand the surface shape in terms of a complete set of basis functions and to use a variational principle equivalent to the continuum evolution equations to obtain coupled nonlinear ordinary differential equations for the expansion coefficients. Unlike several earlier approaches that rely on ad hoc regularization procedures to handle the singularities in the evolution equations, the only inputs required in the present approach are the orientation dependent surface energies and the diffusion constants. The method is applied to study the morphological equilibration of patterned unidirectional and bidirectional sinusoidal modulations through surface diffusion. In the case of bidirectional modulations, particular attention is given to the analysis of the profile decay as a function of ratio of the modulating wavelengths in the coordinate directions. A key question that we resolve is whether the one-dimensional decay behavior is recovered as one of the modulating wavelengths of the two-dimensional profiles diverges, or whether one-dimensional decay has qualitatively distinct features that cannot be described as a limiting case of the two-dimensional behavior. In contrast to some earlier suggestions, our analytical and numerical studies clearly show that the former situation is true; we find that the one-dimensional profiles, like the highly elongated two-dimensional profiles, decay with formation of facets. While our results for the morphological equilibration of symmetric one-dimensional profiles are in agreement with the free-boundary formulation of Spohn, the present approach can also be used to study the evolution of asymmetric profile shapes where the free-boundary approach is difficult to apply. The variational method is also used to analyze the decay of unidirectional modulations in the presence of steps that arise in most experimental studies due to a small misorientation from the singular surface.  相似文献   

9.
In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton–Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm’s original method in deriving Bohmian quantum potential. We do not use any quantum mechanical postulates in this approach.  相似文献   

10.
In a previous article by the author, it was shown that one could effectively give a variational formulation to non‐conservative mechanical systems by starting with the first variation functional instead of an action functional. In this article, it is shown that this same approach will also allow one to give a variational formulation to systems with non‐holonomic constraints. The key is to use an adapted anholonomic local frame field in the formulation, which then implies the replacement of ordinary derivatives with covariant ones. The method is then applied to the case of a vertical disc rolling without slipping or friction on a plane.  相似文献   

11.
陈海军 《物理学报》2015,64(5):54702-054702
利用含时变分法研究了二维光晶格中准二维玻色-爱因斯坦凝聚中的调制不稳定性. 在平均场近似下, 由准二维Gross-Pitaevskii方程出发, 利用变分法给出了调制波振幅和相位所满足的时间演化方程, 通过求解时间演化方程和能量分析法给出了发生调制不稳定性的条件, 决定于平面波振幅, 晶格强度, 调制波的波矢量和原子之间的两体相互作用.  相似文献   

12.
The variational local moment approach (VLMA) solution of the single impurity Anderson model is presented. It generalizes the local moment approach of Logan et al. by invoking the variational principle to determine the lengths of local moments and orbital occupancies. We show that VLMA is a comprehensive, conserving and thermodynamically consistent approximation and treats both Fermi and non-Fermi liquid regimes as well as local moment phases on equal footing. We tested VLMA on selected problems. We solved the single- and multi-orbital impurity Anderson model in various regions of parameters, where different types of Kondo effects occur. The application of VLMA as an impurity solver of the dynamical mean-field theory, used to solve the multi-orbital Hubbard model, is also addressed.  相似文献   

13.
We discuss linear topological defects allowed in two-gap superconductors and equivalent extended Faddeev model. We show that, in these systems, there exist vortices which carry an arbitrary fraction of magnetic flux quantum. Besides that, we discuss topological defects which do not carry magnetic flux and describe features of ordinary one-magnetic-flux-quantum vortices in the two-gap system. The results could be relevant for the newly discovered two-band superconductor MgB2.  相似文献   

14.
We reanalyze the non-linear population dynamics of a Bose–Einstein condensate (BEC) in a double well trap considering a semiclassical approach based on a time dependent variational principle applied to coherent states associated to SU(2) group. Employing a two-mode local approximation and hard sphere type interaction, we show in the Schwinger’s pseudo-spin language the occurrence of a fixed point bifurcation that originates a separatrix of motion on a sphere. This separatrix corresponds to the borderline between two dynamical regimes of Josephson oscillations and mesoscopic self-trapping. We also consider the effects of interaction between particles in different wells, known as cross-collisions. Such terms are usually neglected for traps sufficiently far apart, but recently it has been shown that they contribute to the effective tunneling constant with a factor growing linearly with the particle number. This effect changes considerably the effective tunneling of the system for sufficiently large number of trapped atoms, in perfect accord with experimental data. Finally, we identify analytically the transition parameter associated to the bifurcation in the generalized phase space of the model with cross-collision terms, and show how the dynamical regime depends on the initial conditions of the system and the collisional parameters values.  相似文献   

15.
16.
We adapt ideas coming from Quantum Mechanics to develop a non-commutative strategy for the analysis of some systems of ordinary differential equations. We show that the solution of such a system can be described by an unbounded, self-adjoint and densely defined operator H which we call, in analogy with Quantum Mechanics, the Hamiltonian of the system.We discuss the role of H in the analysis of the integrals of motion of the system. Finally, we apply this approach to several examples.  相似文献   

17.
We consider the problem of defining completely a class of additive conservation laws for the generalized Liouville equation whose characteristics are given by an arbitrary system of first-order ordinary differential equations. We first show that if the conservation law, a time-invariant functional, is additive on functions having disjoint compact support in phase space, then it is represented by an integral over phase space of a kernel which is a function of the solution to the Liouville equation. Then we use the fact that in classical mechanics phase space is usually a direct product of physical space and velocity space (Newtonian systems). We prove that for such systems the aforementioned representation of the invariant functionals will hold for conservation laws which are additive only in physical space; i.e., additivity in physical space automatically implies additivity in the whole phase space. We extend the results to include non-degenerate Hamiltonian systems, and, more generally, to include both conservative and dissipative dynamical systems. Some applications of the results are discussed.  相似文献   

18.
We give a self consistent and simplified proof of the (asymptotic) vanishing of the Beta function in d=1 interacting Fermi systems as a consequence of a few properties deduced from the exact solution of the Luttinger model. Moreover, since the vanishing of the Beta function is usually “proved” in the physical literature through heuristic arguments based on Ward identities, we briefly discuss here also the possibility of exploiting this idea in a rigorous approach, by using a suitable Dyson equation. We show that there are serious difficulties, related to the presence of corrections (for which we get careful bounds), which are usually neglected.  相似文献   

19.
Computing Lagrangian coherent structures from their variational theory   总被引:1,自引:0,他引:1  
Using the recently developed variational theory of hyperbolic Lagrangian coherent structures (LCSs), we introduce a computational approach that renders attracting and repelling LCSs as smooth, parametrized curves in two-dimensional flows. The curves are obtained as trajectories of an autonomous ordinary differential equation for the tensor lines of the Cauchy-Green strain tensor. This approach eliminates false positives and negatives in LCS detection by separating true exponential stretching from shear in a frame-independent fashion. Having an explicitly parametrized form for hyperbolic LCSs also allows for their further in-depth analysis and accurate advection as material lines. We illustrate these results on a kinematic model flow and on a direct numerical simulation of two-dimensional turbulence.  相似文献   

20.
We summarize the original formulation of the free energy principle and highlight some technical issues. We discuss how these issues affect related results involving generalised coordinates and, where appropriate, mention consequences for and reveal, up to now unacknowledged, differences from newer formulations of the free energy principle. In particular, we reveal that various definitions of the “Markov blanket” proposed in different works are not equivalent. We show that crucial steps in the free energy argument, which involve rewriting the equations of motion of systems with Markov blankets, are not generally correct without additional (previously unstated) assumptions. We prove by counterexamples that the original free energy lemma, when taken at face value, is wrong. We show further that this free energy lemma, when it does hold, implies the equality of variational density and ergodic conditional density. The interpretation in terms of Bayesian inference hinges on this point, and we hence conclude that it is not sufficiently justified. Additionally, we highlight that the variational densities presented in newer formulations of the free energy principle and lemma are parametrised by different variables than in older works, leading to a substantially different interpretation of the theory. Note that we only highlight some specific problems in the discussed publications. These problems do not rule out conclusively that the general ideas behind the free energy principle are worth pursuing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号