首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Jogesh C. Pati 《Pramana》2004,62(2):513-522
Evidence in favor of supersymmetric grand unification including that based on the observed family multiplet-structure, gauge coupling unification, neutrino oscillations, baryogenesis, and certain intriguing features of quark-lepton masses and mixings is noted. It is argued that attempts to understand (a) the tiny neutrino masses (especially Δm 2(v 2 – v3)), (b) the baryon asymmetry of the Universe (which seems to need leptogenesis), and (c) the observed features of fermion masses such as the ratiom b/mτ, the smallness ofV cb and the maximality of seem to select out the route to higher unification based on an effective string-unifiedG(224) =SU(2)L ×SU(2)R ×SU(2)c orSO(10)-symmetry that should be operative in 4D, as opposed to other alternatives. A predictiveSO(10)/G(224)-framework possessing supersymmetry is presented that successfully describes the masses and mixings of all fermions including neutrinos. It also accounts for the observed baryon asymmetry of the Universe by utilizing the process of leptogenesis, which is natural to this framework. It is argued that a conservative upper limit on the proton lifetime within thisSO(10)/G(224)-framework, which is so far most successful, is given by x 1034 years. This in turn strongly suggests that an improvement in the current sensitivity by a factor of five to ten (compared to SuperK) ought to reveal proton decay. Implications of this prediction for the next-generation nucleon decay and neutrino-detector are noted.  相似文献   

2.
We propose a unified explanation for the origin of dark matter and baryon number asymmetry on the basis of a non-supersymmetric model for the neutrino masses. Neutrino masses are generated in two distinct ways, that is, a tree-level seesaw mechanism with a single right-handed neutrino, and one-loop radiative effects by a new additional doublet scalar. A spontaneously broken U(1) brings about a Z2 symmetry which restricts couplings of this new scalar and controls the neutrino masses. It also guarantees the stability of a CDM candidate. We examine two possible candidates for the CDM. We also show that the decay of a heavy right-handed neutrino related to the seesaw mechanism can generate baryon number asymmetry through leptogenesis.  相似文献   

3.
Utpal Sarkar 《Pramana》2000,54(1):101-118
Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is generated before the electroweak phase transition, it is possible to discriminate different classes of models of neutrino masses. While see-saw mechanism and the triplet Higgs mechanism are preferred, the Zee-type radiative models and the R-parity breaking models requires additional inputs to generate baryon asymmetry of the universe during the electroweak phase transition.  相似文献   

4.
Quantum gravity (Planck scale effects) lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On symmetry breaking, this operator gives rise to correction to the above masses and mixing. The gravitational interaction M X =M pl , we find that for degenerate neutrino mass spectrum, it is shown that the Majorana phase of the neutrino mixing matrix can effects in neutrino oscillation probability.  相似文献   

5.
张峰  张春旭  黄明球 《物理学报》2010,59(5):3130-3135
本文基于具有整体U(1)代对称性的SU(2)L×SU(2)R×U(1)模型推导了轻子的味混合矩阵,对中微子的质量问题进行了研究.在本文的模型中,产生轻子Dirac质量的汤川耦合拉格朗日密度具有整体U(1)代对称性,所以,模型中的带电轻子质量矩阵和中微子Dirac质量矩阵是Fritzsch形式的.但是,中微子除了具有Dirac质量,一般还具有Majorana质量,在这种一般情况下, 关键词: 中微子质量 轻子味混合矩阵 左右对称模型 代对称性  相似文献   

6.
Neutrino mixing lead to a non zero contribution to the dark energy of the universe. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. The mechanism of neutrino mixing is a possible candidate to contribute the cosmological dark energy. Quantum gravitational (Planck scale) effects lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields, which gives rise to additional terms in neutrino mass matrix. There additional term can be considered to be perturbation of the GUT scale bi-maximal neutrino mass matrix. We assume that the gravitational interaction is flavor. In this paper, we discuss the three flavor neutrino mixing and cosmological dark energy contributes due to Planck scale effects.  相似文献   

7.
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI 0 and μI 0 in the phase diagram, and different values for the charged pion mass(or decay constant) and neutral pion mass(or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses.  相似文献   

8.
9.
We study the spin- and flavour-dependent SU(6) violations in the baryon spectrum by means of a Gürsey-Radicati mass formula. The average energy of each SU(6) multiplet is described using the SU(6)-invariant interaction given by a hypercentral potential containing a linear and a hyper-Coulomb term. We show that the nonstrange- and strange-baryon masses are, in general, fairly well reproduced and moreover that the Gürsey-Radicati formula holds in a satisfactory way also for the excited states up to 2 GeV.  相似文献   

10.
The modification of kaon and antikaon properties in the interior of (proto-)neutron stars is investigated using a chiral SU(3) model. The parameters of the model are fitted to nuclear-matter saturation properties, baryon octet vacuum masses, hyperon optical potentials and low-energy kaon-nucleon scattering lengths. We study the kaon/antikaon medium modification and explore the possibility of antikaon condensation in (proto-)neutron star matter at zero as well as finite temperature/entropy and neutrino content. The effect of hyperons on kaon and antikaon optical potentials is also investigated at different stages of the neutron star evolution.  相似文献   

11.
We consider non-renormalizable interaction term as perturbation of the conventional neutrino mass matrix. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck scale and the electroweak breaking scale. We also assume that, just above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is tetra-maximal. Quantum gravity (Planck scale effects) lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On electroweak symmetry breaking, this operator gives rise to correction to the above masses and mixing. These additional term can be consider as a perturbation to the Tetra-maximal mass matrix. The nature of gravitational interaction demands that the element of this perturbation matrix should be independent of flavor indices. We compute the deviation of three neutrino mixing angles due to Planck scale effects. We find that there is no change in θ 13 and θ 23 but change in solar mixing angle θ 12 is suppress by 3.0°.  相似文献   

12.
《Physics letters. [Part B]》1987,197(4):519-523
We discuss neutrino masses in superstring-inspired models. We present a model possessing an intermediate scale ∼ 108–109 GeV which gives rise to Dirac neutrinos with masses in a range that can account both for the dark matter and the solar neutrino puzzle through the MSW effect. It also accounts for the observed baryon asymmetry through the out-of-equilibrium decay of heavy colored fields at temperatures close to the electroweak scale. Although baryon- and lepton-number symmetries are explicitly broken there are no observable low-energy baryon- or lepton-number-violating effects due to the presence of an accidental unbroken global U(1)2B−L symmetry.  相似文献   

13.
By considering the symmetries associated with baryon number and lepton number conservation as gauge symmetries, the underlying gauge symmetry of weak electromagnetic interactions is shown to beSU(2) L ×U(1)×U(1)Baryon×U(1)Lepton. If right-handed currents exist on a par with the observed left-handed ones, then the full symmetry of electroweak interactions that emerges isSU(2)L×SU(2)R×U(1)Baryon×U(1)Lepton. These symmetries offer a rich spectrum of massive neutral gauge bosons, one of which is the massive neutral boson of the standardSU(2) L ×U(1) Y model.  相似文献   

14.
In the supersymmetric standard model of particle interactions, R-parity nonconservation is often invoked to obtain nonzero neutrino masses. We point out here that such interactions of the supersymmetric particles would erase any pre-existing lepton or baryon asymmetry of the universe before the electroweak phase transition through the B+L violating sphaleron processes. We also point out that all models of radiative generation of neutrino masses suffer from the same problem. We then show how neutrino masses may be obtained in supersymmetry (assuming R-parity conservation) together with successful leptogenesis and predict the possible existence of new observable particles.  相似文献   

15.
Some of the basic problems in neutrino physics, such as new energy scales, the enormous gap between the neutrino masses and the lightest charged fermion mass, and the possible existence of sterile neutrinos in the eV mass range are studied in the local gauge group SU L (4)×U(1) for electroweak unification, which does not contain fermions with exotic electric charges. It is shown that the neutrino mass spectrum can be decoupled from that of the other fermions. The further normal seesaw mechanism for neutrinos, with right-handed neutrino Majorana masses of order MM weak as well a new eV-scale can be accommodated. The eV-scale seesaw may manifest itself in experiments like the Liquid Scintillation Neutrino Detector (LSND) and MiniBooNE (MB) experimental results and future neutrino experiments.  相似文献   

16.
Electroweak unification is obtained in anSU(7) model at a mass scale 3×1010M≦3×1016 GeV's, with left-right symmetric subgroups and sin2 θ w (M)=3/8. BelowM, the model reduces toSU(3) L ×SU(3) R , the flavor sector of the “trinification theory” of Glashow et al., or of theE 6 grand unified theory. This model predicts a natural massless neutrino, and fractionally charged leptons with masses in theM regime.  相似文献   

17.
We propose a non-supersymmetric SU(5)SU(5) model in which only the third family of fermions are unified. The model remedies the non-unification of the three Standard Model couplings in non-supersymmetric SU(5)SU(5). It also provides a mechanism for baryon number violation which is needed for the baryon asymmetry of the Universe and is not present in the Standard Model. Current experimental constraints on the leptoquark gauge bosons, mediating such baryon and lepton violating interactions in our model, allow their masses to be at the TeV scale. These can be searched for as a () or (tt) resonance at the Large Hadron Collider as predicted in our model.  相似文献   

18.
We point out a possible way to settle the issue of the Dirac neutrino mass hierarchy. Constraining the observed baryon asymmetry to the normal hierarchy mass model within the seesaw framework, we look for the possible structure of coveted Dirac neutrino masses. We have found the possible structure of the Dirac neutrino masses to be (λ72,1)v in terms of the parameter λ=0.3, with v as an overall scale factor. PACS 11.30.Er; 11.30.Fs; 13.35.Hb; 14.60.Pq  相似文献   

19.
We apply the meson cloud model to the calculation of non-singlet parton distributions in the nucleon sea, including the octet and the decuplet cloud baryon contributions. We give special attention to the differences between non-strange and strange sea quarks, trying to identify possible sources of SU(3) flavor breaking. An analysis in terms of the parameter is presented, and we find that the existing SU(3) flavor asymmetry in the nucleon sea can be quantitatively explained by the meson cloud. We also consider the baryon, finding similar conclusions. Received: 28 July 2000 / Published online: 23 October 2000  相似文献   

20.
We consider leptogenesis in a minimal S3 extension of the standard model with an additional Z2 symmetry in the leptonic sector. It is found that the CP phase appearing in the mass matrix of the left-handed neutrinos is the same as that for the CP asymmetries responsible for leptogenesis. Because of the discrete S3 x Z2 flavor symmetries, the CP asymmetries are strongly suppressed. To obtain a realistic size of the baryon number asymmetry in the universe, we therefore have to assume that resonant enhancement of the CP asymmetries takes place, and that three degenerate right-handed neutrino masses of O(10) TeV are present. Arrival of the final proofs: 22 November 2005 PACS: 11.30.Hv, 12.15.Ff, 14.60.Pq  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号