首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases remain positive even in the synchronous regime. Such frequency locked dynamics with different ratios of frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show that this transition to phase synchronization occurs via a crisis transition to a band-structured attractor.  相似文献   

2.
The influence of noise on the generalized synchronization regime in the chaotic systems with dissipative coupling is considered. If attractors of the drive and response systems have an infinitely large basin of attraction, generalized synchronization is shown to possess a great stability with respect to noise. The reasons of the revealed particularity are explained by means of the modified system approach [A.E. Hramov, A.A. Koronovskii, Phys. Rev. E 71, 067201 (2005)] and confirmed by the results of numerical calculations and experimental studies. The main results are illustrated using the examples of unidirectionally coupled chaotic oscillators and discrete maps as well as spatially extended dynamical systems. Different types of the model noise are analyzed. Possible applications of the revealed particularity are briefly discussed.  相似文献   

3.
The application of symbolic CTQ-analysis for studying synchronization of chaotic oscillations is considered. This approach differs substantially from its analogs since it makes it possible to diagnose and measure quantitatively the characteristics of intermittency regimes in synchronization of chaotic systems and, hence, to analyzer the temporal structure of synchronization. The application of the symbolic analysis apparatus based on the T alphabet to systems with phase locking and synchronization of time scales is demonstrated for the first time. As an example, a complex system of two mutually coupled nonidentical Rössler oscillators in the helical chaos regime with attractors having an ill-conditioned phase is considered. The results show that the method considered here makes it possible to reliably diagnose synchronism sooner than a phase locking and/or time-scale synchronization threshold is detected.  相似文献   

4.
It is widely believed that when two discrete time chaotic systems are coupled together then there is a contraction in the phase space (where the essential dynamics takes place) when compared with the phase space in the uncoupled case. Contrary to such a popular belief, we produce a counter example--we consider two discrete time chaotic systems both with an identical attractor A, and show that the two systems could be nonlinearly coupled in a way such that the coupled system's attractor persists strongly, i.e., it is A?×?A despite the coupling strength is varied from zero to a nonzero value. To show this, we prove robust topological mixing on A?×?A. Also, it is of interest that the studied coupled system can exhibit a type of synchronization called generalized partial synchronization which is also robust.  相似文献   

5.
The existing concept of the weak and strong synchronization in discrete maps is verified. The state vectors of interacting chaotic systems are shown to be related to each other by the functional relation only in the strong synchronization regime; in the weak regime, the prehistory must be taken into account. An approach to determining the threshold of generalized synchronization in such systems is proposed.  相似文献   

6.
We study phase synchronization effects of chaotic oscillators with a type-I intermittency behavior. The external and mutual locking of the average length of the laminar stage for coupled discrete and continuous in time systems is shown and the mechanism of this synchronization is explained. We demonstrate that this phenomenon can be described by using results of the parametric resonance theory and that this correspondence enables one to predict and derive all zones of synchronization.  相似文献   

7.
杨科利 《物理学报》2016,65(10):100501-100501
本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.  相似文献   

8.
A pair of coupled erbium doped fiber ring lasers is used to explore the dynamics of coupled spatiotemporal systems. The lasers are mutually coupled with a coupling delay less than the cavity round-trip time. We study synchronization between the two lasers in the experiment and in a delay differential equation model of the system. Because the lasers are internally perturbed by spontaneous emission, we include a noise source in the model to obtain stochastic realizations of the deterministic equations. Both amplitude synchronization and phase synchronization are considered. We use the Hilbert transform to define the phase variable and compute phase synchronization. We find that synchronization increases with coupling strength in the experiment and the model. When the time series from two lasers are time shifted in either direction by the delay time, approximately equal synchronization is frequently observed, so that a clear leader and follower cannot be identified. We define an algorithm to determine which laser leads the other when the synchronization is sufficiently different with one direction of time shift, and statistics of switches in leader and follower are studied. The frequency of switching between leader and follower increases with coupling strength, as might be expected since the lasers mutually influence each other more effectively with stronger coupling.  相似文献   

9.
Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored.It is found that depending on parameter mismatches,the synchronization of phases exhibits different manners.The synchronization regime can be divided into three regimes.For small mismatches,the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases,the amplitudes and phases of oscillators are correlated,and the amplitudes will dominate the synchronous dynamics for very large mismatches.The lag time among phases exhibits a power law when phase synchronization is achieved.  相似文献   

10.
The intermittent behavior of spatially extended systems is investigated using the example of unidirectionally coupled Pierce diodes. It isshown that the same type of intermittency as in finite-scaled systems is characteristic of this system near the boundary of the chaotic phase synchronization regime, i.e., needle-eye type intermittency, which is in fact also equivalent to type I intermittency with noise in the supercritical region.  相似文献   

11.
G Sivaganesh  A Arulgnanam 《中国物理 B》2017,26(5):50502-050502
We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.  相似文献   

12.
We study the dynamics of an ensemble of globally coupled chaotic logistic maps under the action of a learning algorithm aimed at driving the system from incoherent collective evolution to a state of spontaneous full synchronization. Numerical calculations reveal a sharp transition between regimes of unsuccessful and successful learning as the algorithm stiffness grows. In the regime of successful learning, an optimal value of the stiffness is found for which the learning time is minimal.  相似文献   

13.
This paper deals with the chaotic oscillator synchronization. An approach to the synchronization of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are the particular cases of the synchronized behavior called "time-scale synchronization." The quantitative measure of chaotic oscillator synchronous behavior has been proposed. This approach has been applied for the coupled R?ssler systems and two coupled Chua's circuits.  相似文献   

14.
The collective dynamics of Kuramoto oscillators with a positive correlation between the incoherent and fully coherent domains in clustered scale-free networks is studied. Emergence of chimera states for the onsets of explosive synchronization transition is observed during an intermediate coupling regime when degree-frequency correlation is established for the hubs with the highest degrees. Diagnostic of the abrupt synchronization is revealed by the intrinsic spectral properties of the network graph Laplacian encoded in the heterogeneous phase space manifold, through extensive analytical investigation, presenting realistic MC simulations of nonlocal interactions in discrete time dynamics evolving on the network.  相似文献   

15.
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior.  相似文献   

16.
《Physics letters. A》2020,384(8):126176
Measure synchronization is a well-known phenomenon in coupled classical Hamiltonian systems over last two decades. Here, synchronization in a pair of coupled Harper systems is investigated both in classical and quantum contexts. It seems that the concept of measure synchronization is restricted in the classical limit as it involves with the phase space. We show the quantum counterpart of the synchronization in a pair of coupled quantum kicked Harper chains. In the quantum context, the coupling occurs between two spins chains via a time and site dependent potential. We use the average interaction energy between the participating systems as an order parameter in both the contexts to establish a connection between the classical and the quantum scenarios. Besides, we also study the entanglement between the chains and difference between the average bare energies in the quantum context. Interestingly, all such indicators suggest a connection between the MS transition in classical maps and a phase transition in quantum spin chains.  相似文献   

17.
We consider chaotic oscillator synchronization and propose a new approach for detecting the synchronized behavior of chaotic oscillators. This approach is based on analysis of different time scales in the time series generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed. This approach is applied to coupled Rössler systems.  相似文献   

18.
We study coupled dynamics on networks using symbolic dynamics. The symbolic dynamics is defined by dividing the state space into a small number of regions (typically 2), and considering the relative frequencies of the transitions between those regions. It turns out that the global qualitative properties of the coupled dynamics can be classified into three different phases based on the synchronization of the variables and the homogeneity of the symbolic dynamics. Of particular interest is the homogeneous unsynchronized phase, where the coupled dynamics is in a chaotic unsynchronized state, but exhibits qualitative similar symbolic dynamics at all the nodes in the network. We refer to this dynamical behavior as symbolic synchronization. In this phase, the local symbolic dynamics of any arbitrarily selected node reflects global properties of the coupled dynamics, such as qualitative behavior of the largest Lyapunov exponent and phase synchronization. This phase depends mainly on the network architecture, and only to a smaller extent on the local chaotic dynamical function. We present results for two model dynamics, iterations of the one-dimensional logistic map and the two-dimensional Henon map, as local dynamical function.  相似文献   

19.
We study the impact of competing time delays in coupled stochastic synchronization and coordination problems. We consider two types of delays: transmission delays between interacting elements and processing, cognitive, or execution delays at each element. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in synchronization problems with time delays.  相似文献   

20.
Phase synchronization in unidirectionally coupled Ikeda time-delay systems exhibiting non-phase-coherent hyperchaotic attractors of complex topology with highly interwoven trajectories is studied. It is shown that in this set of coupled systems phase synchronization (PS)does exist in a range of the coupling strength which is preceded by a transition regime (approximate PS)and a nonsynchronous regime. However, exact generalized synchronization does not seem to occur in the coupled Ikeda systems (for the range of parameters we have studied)even for large coupling strength, in contrast to our earlier studies in coupled piecewise-linear and Mackey-Glass systems [27,28]. The above transitions are characterized in terms of recurrence based indices, namely generalized autocorrelation function P(t), correlation of probability of recurrence (CPR), joint probability of recurrence (JPR)and similarity of probability of recurrence (SPR). The existence of phase synchronization is also further confirmed by typical transitions in the Lyapunov exponents of the coupled Ikeda time-delay systems and also using the concept of localized sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号