首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
保护的预酯化紫杉醇侧链的合成   总被引:1,自引:1,他引:0  
以市场可购得的(2R,3S)-苯基异丝氨酸盐酸盐为起始原料,通过在甲醇的氯化亚砜溶液中进行酯化反应,及随后对氨基进行苯甲酰化,氨基羟基的环化保护,最后对其酯进行水解,合成得到保护的预酯化的紫杉醇侧链.整个过程无需柱层析操作,适于工业化生产.为制备保护的预酯化紫杉醇侧链提供了一种有效而又实用的合成方法.  相似文献   

2.
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.  相似文献   

3.
4.
紫杉醇衍生物的三维定量构效关系研究   总被引:11,自引:2,他引:9  
利用比较分子力场分析(CoMFA)方法对98个紫杉醇衍生物的三维定量构效关系(3D-QSAR)进行了分析,发现影响其活性的立体能与静电能之比为61.6/38.4.进一步分析表明,C-13侧链基团的改变对其活性影响较大,尤其是2'-OH对保持活性是至关重要的;而母环其它位置取代基的改变对活性影响较小.该模型交叉验证rcv2=0.714,非交叉验证r2=0.901;以此模型对验证组10个化合物活性进行预测,rpred2=0.812,表明模型具有很好的预测能力,对紫杉醇的改性或新类似物的合成具有指导意义.  相似文献   

5.
The interactions of epothilone analogs with the paclitaxel binding site of microtubules were studied. The influence of chemical modifications in the C15 side chain and in C12 on binding affinity and microtubule elongation was characterized. Modifications favorable for binding affinity are (1). a thiomethyl group at C21 of the thiazole side chain, (2). a methyl group at C12 in S configuration, (3). a pyridine side chain with C15 in S configuration, and (4). a cyclopropyl moiety between C12 and C13. The same modification in different ligands has similar effect on affinity, allowing good structure-affinity characterization. The correlation between binding, microtubule stabilization, and cytotoxicity of the compounds has been determined, showing differential effects of the modifications. The binding constants correlate well with IC(50) values, demonstrating that affinity measurements are a useful tool for drug design.  相似文献   

6.
Molecular interactions between paclitaxel, an anticancer drug, and phospholipids of various chain unsaturations and headgroup types were investigated in the present study by Langmuir film balance and differential scanning calorimetry. Both the lipid monolayer at the air-water interface and the lipid bilayer vesicles (liposomes) were employed as model cell membranes. It was found that, regardless of the difference in molecular structure of the lipid chains and headgroup, the drug can form nonideal, miscible systems with the lipids at the air-water interface over a wide range of paclitaxel mole fractions. The interaction between paclitaxel and phospholipid within the monolayer was dependent on the molecular area of the lipids at the interface and can be explained by intermolecular forces or geometric accommodation. Paclitaxel is more likely to form thermodynamically stable systems with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dielaidoyl-sn-glycero-3-phosphocholine (DEPC) than with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Investigation of the drug penetration into the lipid monolayer showed that DPPC and DEPC have higher incorporation abilities for the drug than DPPE and DSPC. A similar trend was also evidenced by DSC investigation with liposomes. While little change of DSC profiles was observed for the DPPE/paclitaxel and DSPC/paclitaxel liposomes, paclitaxel caused noticeable changes in the thermographs of DPPC and DEPC liposomes. Paclitaxel was found to cause broadening of the main phase transition without significant change in the peak melting temperature of the DPPC bilayers, which demonstrates that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer, i.e., in the region of the C1-C8 carbon atoms of the acyl chain or binding at the polar headgroup site of the lipids. However, it may penetrate into the deeper hydrophobic zone of the DEPC bilayers. These findings provide useful information for liposomal formulation of anticancer drugs as well as for understanding drug-cell membrane interactions.  相似文献   

7.
Paclitaxel (Taxol), a diterpenoid isolated from Taxus brevifolia, is effective against several murine tumors, and is one of the most exciting anticancer molecules currently available. Due to its low solubility in water, it is clinically administered with polyethoxylated castor oil (Cremophor EL), which causes serious side effects. Inclusion of paclitaxel in solid lipid nanoparticles (SLNs) has proved to be a good approach to eliminate the need for Cremophor EL and improve the drug's antitumor efficacy. This paper describes the development of two types of long-circulating SLNs as colloidal carriers for paclitaxel. SLNs are constituted mainly of bioacceptable and biodegradable lipids. In vitro release kinetics showed that the release was very slow, the release of paclitaxel from F68-SLN is linear, and the release of paclitaxel from Brij78-SLN followed the Weibull equation. Pharmacokinetics was evaluated in KM mice after injection of paclitaxel formulated in Cremophor EL or in Brij78-SLN and F68-SLN. Encapsulation of paclitaxel in both SLNs produced marked differences compared with the free drug pharmacokinetics. F68-SLN and Brij78-SLN are long-circulating (t 1/2 beta, 10.06 and 4.88 h, respectively) compared with paclitaxel injection (t 1/2 beta, 1.36 h).  相似文献   

8.
7-Glycolylpaclitaxel 2″-O-α-glucooligosaccharides, novel taxol (paclitaxel) prodrugs of ester-linked oligosaccharide series compounds, were synthesized by chemo-enzymatic procedures, including enzymatic transglycosylations with α-glucosidase and cyclodextrin glucanotransferase. The water-solubility of 7-glycolylpaclitaxel 2″-O-α-glucopentaoside was 2.7 mM, which was 6.8 thousand-fold higher than that of paclitaxel. C-7 modification of paclitaxel with a longer oligosaccharide chain decreased the in vitro cytotoxicity of paclitaxel against KF human ovarian cancer cells.  相似文献   

9.
紫杉醇对柔红霉素与DNA作用影响的研究   总被引:3,自引:0,他引:3  
赵洁  程圭芳  徒永华  林莉  何品刚  方禹之 《化学学报》2005,63(22):2063-2068
采用紫外-可见光谱、荧光光谱、微分脉冲伏安法以及紫外-可见光谱电化学法等多种手段, 从分子水平研究了紫杉醇对柔红霉素与DNA作用的影响. 紫杉醇可以和柔红霉素形成分子间氢键; 紫杉醇的长链对柔红霉素糖环以及柔红霉素和DNA所形成加合物的外围有一定程度的缠绕作用, 最终使柔红霉素的药效增加毒副作用减小.  相似文献   

10.
We report on the design of a polymeric prodrug of the anticancer agent paclitaxel (PTX) by a grafting‐from‐drug approach. A chain transfer agent for reversible addition fragmentation chain transfer (RAFT) polymerization was efficiently and regioselectively linked to the C2′ position of paclitaxel, which is crucial for its bioactivity. Subsequent RAFT polymerization of a hydrophilic monomer yielded well‐defined paclitaxel–polymer conjugates with high drug loading, water solubility, and stability. The versatility of this approach was further demonstrated by ω‐end post‐functionalization with a fluorescent tracer. In vitro experiments showed that these conjugates are readily taken up into endosomes where native PTX is efficiently cleaved off and then reaches its subcellular target. This was confirmed by the cytotoxicity profile of the conjugate, which matches those of commercial PTX formulations based on mere physical encapsulation.  相似文献   

11.
An efficient cascade approach to α-hydroxy-β-amino acid derivatives is reported, which goes through a 1,3-dipolar cycloaddition of carbonyl ylides and N-benzoylbenzyl imines and followed by hydrolysis under acidic conditions. This is the first example of using N-benzoylbenzyl imine as dipolarophile for 1,3-dipolar cycloaddition with carbonyl ylide, which provides a direct and convenient access for the one-pot synthesis of paclitaxel side chain and its derivatives.  相似文献   

12.
XU  Li  QI  Xin  ZHOU  Zhi-Ping 《有机化学》2004,24(Z1)
The complex natural product paclitaxel (TaxolR) 1, first isolated from Taxus brevifolia, and its semisynthetic analog,docetaxel 2, represent a large family of taxane diterpenoids, which revealed excellent clinical activity against ovarian and breast cancers, and showed promising results in the treatment of other cancers.[1] Extensive studies on the structure activity relationship (SAR) have been explored. It is already well known that a free hydroxyl group at the C-2' position on the C-13 side chain is crucial for microtubule binding[2] and may act as a hydrogen bond donor.  相似文献   

13.
Taxol (paclitaxel) and Taxotere (docetaxel) are currently considered to be among the most important anticancer drugs in cancer chemotherapy. The anticancer activity of these drugs is ascribed to their unique mechanism of action, i.e., causing mitotic arrest in cancer cells, leading to apoptosis through inhibition of the depolymerization of microtubules. Although both paclitaxel and docetaxel possess potent antitumor activity, treatment with these drugs often results in a number of undesirable side effects, as well as multidrug resistance (MDR). Therefore, it has become essential to develop new anticancer agents with superior pharmacological properties, improved activity against various classes of tumors, and fewer side effects. This paper describes an account of our research on the chemistry of paclitaxel and taxoid anticancer agents at the biomedical interface, including: 1. The structure-activity relationship (SAR) study of taxoids leading to the development of the "second-generation" taxoids, which possess exceptional activity against drug-resistant cancer cells expressing the MDR phenotype. 2. Development of fluorinated taxoids to study the bioactive conformation of paclitaxel and photoaffinity labeling taxoids for mapping of the drug-binding domain on both microtubules and P-glycoprotein. 3. The synthesis of novel macrocyclic taxoids for the investigation into the common pharmacophore for microtubule stabilizing anticancer agents.  相似文献   

14.
Loss of side chains from different amino acid residues in a model peptide framework of RGGGXGGGR under electron capture dissociation conditions were systematically investigated, where X represents one of the twenty common amino acid residues. The alpha-carbon radical cations initially formed by N-Calpha cleavage of peptide ions were shown to undergo secondary dissociation through losses of even-electron and/or odd-electron side-chain moieties. Among the twenty common amino acid residues studied, thirteen of them were found to lose their characteristic side chains in terms of odd-electron neutral fragments, and nine of them were found to lose even-electron neutral side chains. Several generalized dissociation pathways were proposed and were evaluated theoretically with truncated leucine-containing models using ab initio calculations at B3-PMP2/6-311++G(3df,2p)//B3LYP/6-31++G(d,p) level. Elimination of odd-electron side chain was associated with the initial abstraction of the hydrogen from the alpha-carbon bearing the side chain by the N-terminal alpha-carbon radical. Subsequent formation of alpha-beta carbon-carbon double bond leads to the elimination of the odd-electron side chain. The energy barrier for this reaction pathway was 89 kJmol-1. This reaction pathway was 111 kJmol-1 more favorable than the previously proposed pathway involving the formation of cyclic lactam. Elimination of even-electron side chain was associated with the initial abstraction of the gamma-hydrogen from the side chain by the N-terminal alpha-carbon radical. Subsequent formation of beta-gamma carbon-carbon double bond leads to the elimination of the even-electron side chain and the migration of the radical center to the alpha-carbon. The energy barrier for this fragmentation reaction was found to be 50 kJmol-1.  相似文献   

15.
《Tetrahedron: Asymmetry》1999,10(4):671-674
A highly enantioselective (up to 97% ee) one-step synthesis of paclitaxel side chain precursor, (2R,3S)-isopropyl 3-benzamido-2-hydroxy-3-phenylpropionate, has been achieved by osmium-catalyzed asymmetric aminohydroxylation of isopropyl trans-cinnamate with N-bromobenzamide as an oxidant/nitrogen source in the presence of (DHQ)2PHAL as a chiral ligand. Simple recrystallization of crude product (containing regioisomer and diol) from ethyl acetate gave the enantiomerically pure product.  相似文献   

16.
在碱性条件下通过卤代烃的N-烷基取代反应制备得到烷基壳聚糖衍生物。X射线光电子能谱计算结果表明烷基取代反应主要发生在壳聚糖的氨基上。动态光散射研究表明,该衍生物在水中可自动形成粒径在10—200nm范围的纳米微粒,负载紫杉醇后微球的粒径增大,在磷酸缓冲液(pH=7.4)中体外释放研究表明,随着烷基链长的增加,紫杉醇在磷酸缓冲液中达到平衡时的浓度降低。  相似文献   

17.
Poly(stearyl methacrylate‐co‐methacrylic acid) (SMA) and its sodium ionomer (SMI) were synthesized and the permeability of the model drug through the SMA and SMI films was measured. The side‐chain crystalline structure for the dried and hydrated SMA, SMI was investigated using DSC and WAXS. The side‐chain crystalline structure of the hydrated SMI was much more stable than that of the hydrated SMA at room temperature. The temperature‐sensitive phase transition of the side‐chain crystalline structure for the hydrated SMI was also studied by the temperature variable WAXS experiment. The temperature‐sensitive permeation of the hydrophilic model drug through SMI was observed around 20 °C, whereas the drug permeation through SMA was almost constant within the temperature range studied. The change of drug permeability through the SMA and SMI films with temperature seems to be associated with the side‐chain crystalline structure of the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 823–830, 2000  相似文献   

18.
《Tetrahedron: Asymmetry》2000,11(22):4485-4497
Reduction of methyl 3-chloro-2-oxo-3-phenylpropanoate with various reducing agents gave syn- and anti-3-chloro-2-hydroxy-3-phenylpropanoates 3, which underwent an efficient lipase-catalyzed resolution. All four diastereomers were subsequently converted to N-benzoyl-(2R,3S)-3-phenylisoserine methyl ester, C-13 side chain analogues of paclitaxel (Taxol).  相似文献   

19.
Copoly(γ-stearyl L-glutamate-γ-methyl L-glutamate)s with various compositions were synthesized by ester exchange of poly(γ-methyl L-glutamate) with stearyl alcohol. The temperature dependence of the volume and helical spacing of the copolyglutamates thus prepared was examined from 0 to 100°C, observing the melting and crystallization of the long alkyl side chain attached to the polypeptide backbone. The melting temperature of the long side chain increased with increasing stearyl L-glutamate content. With increasing temperature, the α helical spacing decreased, especially with the melting of the side chain. On the other hand, the volume increased with increasing temperature and a marked increase was observed on melting. The above two phenomena were elucidated according to the structural model of the long side chain of the copolyglutamates proposed here. The transport properties, permeability coefficients were found to be considerably affected by the side-chain structure of the copolyglutamate and by the melting or crystallization of the side chain. The permeability coefficient of the copolyglutamate with 67% degree of stearylation, varied as much as two orders of magnitude before and after melting or crystallization. It was also confirmed that the permeability coefficient is controllable by the side-chain structural change of polypeptides.  相似文献   

20.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号