首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents expressions for the dissipation inequality corresponding to an equilibrium shock. These expressions are independent of the orientation of the shock. A sufficient condition on the constitutive equations for positive dissipation is given in the case of anti-plane deformations.  相似文献   

2.
In various formulations of plasticity, there is evident a structure embracing several features, including inviscidity, a yield condition, and a constitutive inequality. By means of these features the constitutive equations of plasticity are derived. In the present paper we introduce a viscoplastic counterpart of the constitutive inequality of plasticity, and we consider its physical significance. We also present a theory of viscoplasticity having a structure similar to that of plasticity and its relation with the Hohenemser-Prager prototype of viscoplastic constitutive relations is considered.  相似文献   

3.
A constitutive framework for electro-sensitive materials in the context of non-linear elasticity is analyzed. Constitutive equations are given in terms of energy functions that depend on several invariants. The study includes both the analysis of the invariants, which are present in the energy functions, and the analysis of constitutive restrictions that have to be obeyed by the constitutive functions. Isotropic as well as non-isotropic electro-sensitive elastomers are studied. The set of invariants that describe each material model is analyzed under two homogeneous deformations: (i) an uniaxial elongation and (ii) a simple shear deformation. These deformations are chosen since they are relevant to specific experiments, from which one may try to fit constitutive equations. The constitutive restrictions developed are based on classical ones used for isotropic non-linear elastic materials, in particular, are based on the Baker–Ericksen inequality and the ellipticity condition.  相似文献   

4.
A non-linear rate-type constitutive equation, established by Rajagopal, provides a generalization of the Maxwell fluid. This note embodies such a constitutive equation within the scheme of materials with internal variables thus allowing also for solids with both dissipative and thermoelastic mechanisms. The compatibility with the second law of thermodynamics, expressed by the Clausius–Duhem inequality, is examined and the restrictions on the evolution equations are determined. Next the propagation condition of discontinuity waves is derived, for shock waves and acceleration waves, by regarding the body as a definite conductor. Infinitesimal shock waves and acceleration waves show similar effects. The effective acoustic tensor proves to be the sum of a thermoelastic tensor and a tensor arising from the rate-type equation.  相似文献   

5.
本文从三维弹性力学最基本的平衡方程和本构关系出发,推导出状态传递微分方程,在求解状态传递微分方程时,建议了一种对指数矩阵进行分解的方法,避免了直接解法可能导致状态变量的发散的问题,引入了无穷远处的状态为量为有限值的条件,推导出上,下无限层表面的位移与应力关系式,再根据状态传递方程,可得出层状介质任意点的应力和位移的值,此结果可直接退化到无限域经典的Kelvin解。  相似文献   

6.
A thermodynamics is developed for a unified theory of elasticity and plasticity in infinitesmal strain. The constitutive equations which relate stress and strain deviators are rate type differential equations. When they satisfy a Lipschitz condition, uniqueness for the initial value problem dictates that the stress and strain will be related through elastic relations. Failure of the Lipschitz condition occurs when a von Mises yield condition is achieved: Plastic yield then occurs and the deviator relations turn into the Prandtl-Reuss equations. The plastic yield solution is stable during loading and unstable during unloading. The requirement that the solution followed during unloading be stable dictates entry into an elastic regime. Appropriate thermodynamic functions are constructed. It then appears that stress deviator (not strain deviator) is a viable state variable, and the thermodynamic relations are constructed in terms of a Gibbs function. The energy balance leads to satisfaction of the Clausius-Duhem inequality (and thus the second law of thermodynamics) in an elastic regime because it is shown that in an elastic regime entropy production is caused only by heat flux. During yield, the proper method of differentiating yields entropy production terms in addition to those arising from heat flux. These terms are positive during loading, whence it is concluded that the requirement that a stable solution be followed leads to satisfaction of the Clausius-Duhem inequality during plastic as well as elastic behavior.  相似文献   

7.
IntroductionSoilisthemostcommonlyusedconstructionmaterialincivilengineeringandhydraulicengineering .Thecharacteristicsofsoilhavebeeninvestigatingfornearlyonehundredyears.Butbecauseofitscomplexstructure,changeableenvironmentandbeingsensitivetotheoutsideconditions,thesoiloftenshowsvariedproperties[1,2 ].Themaindifficultytothedevelopmentofgeotechnicalmechanicsishowtosetupconstitutiveequationswhichcouldsatisfactorilyaccountforengineeringpropertiesofsoil[3].Manyconstitutivemodelshavebeenformedinth…  相似文献   

8.
J. Meixner 《Rheologica Acta》1982,21(4-5):398-399
Constitutive equations of the differential type are often considered as approximations to constitutive equations of the after-effect type. In this case, conclusions drawn from them in conjunction with the Clausius-Duhem inequality are unfounded and untenable.  相似文献   

9.
Starting with the equations of balance of energy and the Clausius-Duhem inequality the non-isothermal behavior of elastic-plastic materials without and with viscous properties is described. All quantities in the equations of balance of energy and in the Clausius-Duhem inequality are expanded in series. This procedure leads to the development of restrictions and stress-strain-relations, which contain as special cases the constitutive equations of classical plasticity and viscoplasticity.  相似文献   

10.
A gradient elastic material model exhibiting gradient kinematic and isotropic hardening is addressed within a thermodynamic framework suitable to cope with nonlocal-type continua. The Clausius–Duhem inequality is used, in conjunction with the concepts of energy residual, insulation condition and locality recovery condition, to derive all the pertinent restrictions upon the constitutive equations, including the PDEs and the related higher order (HO) boundary conditions that govern the gradient material behaviour. Through a suitable limiting procedure, the HO boundary conditions are shown to interpret the action, upon the body's boundary surface, of idealized extra HO constraints capable to impede the onset of strain as a nonlocality source and to react with a double traction (of dimension moment/area), work-conjugate of the impeded strain. The HO boundary conditions for the internal moving elastic/plastic boundary are also provided. A number of variational principles are proved. A few simple illustrative numerical examples are worked out.  相似文献   

11.
In this paper, a general framework of continuum theory for a growing deformable body is established. Firstly, the so-called material accretion derivative is defined. Based on this definition, a general form of the equilibrium equation and its growing boundary condition describing motion of the growing deformable body are deduced in detail. From the process of deduction, the concept of coupling function of growth is derived, which reflects the influence of the accretive boundary surface. Then, the equilibrium equations, including the equation of mass, momentum, moment of momentum and energy, are discussed. Also, the entropy inequality is given according to the assumption of local equilibrium of non-equilibrium thermodynamics. In the meantime, the related constitutive equations are deduced. All these equations constitute a group of closed equations characterizing the growth and motion of the body.  相似文献   

12.
A numerical scheme for the transient solution of a generalized version of the Poisson–Nernst–Planck (PNP) equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The PNP equations represent a set of diffusion equations for charged species, i.e. dissolved ions, present in the pore solution of a rigid porous material in which the surface charge can be assumed neglectable. These equations are coupled to the ‘internally’ induced electrical field and to the velocity field of the fluid. The Nernst–Planck equations describing the diffusion of the ionic species and Gauss’ law in use are, however, coupled in both directions. The governing set of equations is derived from a simplified version of the so-called hybrid mixture theory (HMT). The simplifications used here mainly concerns ignoring the deformation and stresses in the porous material in which the ionic diffusion occurs. The HMT is a special version of the more ‘classical’ continuum mixture theories in the sense that it works with averaged equations at macroscale and that it includes the volume fractions of phases in its structure. The background to the PNP equations can by the HMT approach be described by using the postulates of mass conservation of constituents together with Gauss’ law used together with consistent constitutive laws. The HMT theory includes the constituent forms of the quasistatic version of Maxwell’s equations making it suitable for analyses of the kind addressed in this work. Within the framework of HTM, constitutive equations have been derived using the postulate of entropy inequality together with the technique of identifying properties by Lagrange multipliers. These results will be used in obtaining a closed set of equations for the present problem.  相似文献   

13.
The nonlinear constitutive equations and field equations of unsaturated soils were constructed on the basis of mixture theory. The soils were treated as the mixture composed of three constituents. First, from the researches of soil mechanics, some basic assumptions about the unsaturated soil mixture were made, and the entropy inequality of unsaturated soil mixture was derived. Then, with the common method usually used to deal with the constitutive problems in mixture theory, the nonlinear constitutive equations were obtained. Finally, putting the constitutive equations of constituents into the balance equations of momentum, the nonlinear field equations of constituents were set up. The balance equation of energy of unsaturated soil was also given, and thus the complete equations for solving the thermodynamic process of unsaturated soil was formed. Foundation items: the National Natural Science Foundation of China (59678003); Special Research Plan of the Education Department of Shaanxi Province (01JK178) Biographies: HUANG Yi (1936-) ZHANG Yin-ke (1964-)  相似文献   

14.
The resultant, two-dimensional thermomechanics of shells undergoing diffusionless, displacive phase transitions of martensitic type of the shell material is developed. In particular, we extend the resultant surface entropy inequality by introducing two temperature fields on the shell base surface: the referential mean temperature and its deviation, with corresponding dual fields: the referential entropy and its deviation. Additionally, several extra surface fields related to the deviation fields are introduced to assure that the resultant surface entropy inequality be direct implication of the entropy inequality of continuum thermomechanics. The corresponding constitutive equations for thermoelastic and thermoviscoelastic shells of differential type are worked out. Within this formulation of shell thermomechanics, we also derive the thermodynamic continuity condition along the curvilinear phase interface and propose the kinetic equation allowing one to determine position and quasistatic motion of the interface relative to the base surface. The theoretical model is illustrated by two axisymmetric numerical examples of stretching and bending of the circular plate undergoing phase transition within the range of small deformations.  相似文献   

15.
Constitutive equations for a linear thermoelastic dielectric are derived from the energy balance equation assuming dependence of the stored energy function on the strain tensor, the polarization vector, the polarization gradient tensor and entropy. A method is indicated for constructing a hierarchy of constitutive equations for materials with arbitrary symmetry by introducing various thermodynamic potentials. Maxwell's relations are constructed for the thermodynamic potential WL. The entropy inequality is used to obtain stability conditions for an elastic dielectric in equilibrium under prescribed boundary constraints. Frequencies are explicitly determined for a plane wave propagating along the x1-axis in an infinite centro-symmetric isotropic thermoelastic dielectric.  相似文献   

16.
A constitutive model that highlights a special viscoelastic property of materials with cellular microstructures is developed. We model the microstructure as a regularly arranged system of the same elastic cells that are mutually interconnected by elastic linkages. The space between cells is filled by a fluid that may flow freely within this extracellular space. The macroscopic behavior of the whole structure is studied by means of continuum mechanics using a differential scheme with internal variables. Here, the internal variables are chosen as the distances that separate neighboring cells. The evolution equations are derived from the Clausius–Planck inequality, which considers the internal dissipation to be exclusively due to the extracellular fluid movement. Special attention is paid to incompressible materials in the context of uniaxial load. In this context, the importance of the fluid viscosity on material behavior is related to microstructural parameters like the cells’ dimensions and the relative stiffness between the cells and matrix elastic reinforcement.  相似文献   

17.
18.
The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g., the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We also use the fact that the corotational rate of the Eulerian Hencky strain associated with the so-called logarithmic spin is equal to the strain rate tensor (symmetric part of the velocity gradient tensor). Satisfying the second law of thermodynamics in the Clausius-Duhem inequality form, we derive a thermodynamically-consistent constitutive model in a Lagrangian form. In comparison with the available finite strain models in which the unsymmetric Mandel stress appears in the equations, the proposed constitutive model includes only symmetric variables. Introducing a logarithmic mapping, we also present an appropriate form of the proposed constitutive equations in the time-discrete frame. We then apply the developed constitutive model to shape memory alloys and propose a well-defined, non-singular definition for model variables. In addition, we present a nucleation-completion condition in constructing the solution algorithm. We finally solve several boundary value problems to demonstrate the proposed model features as well as the numerical counterpart capabilities.  相似文献   

19.
周光明  黄再兴 《力学季刊》2004,25(2):163-167
本文着重探讨了生长变形体连续介质理论中的本构模型。首先列出了描述生长变形体能量平衡的微分方程以及熵不等式;以此为基础,通过将密度演化的历史作为独立的本构变量扩展了理性力学的因果性公理与决定性公理,具体而详细地推导了简单材料的生长弹性本构方程,给出了这些本构方程中的相关本构变量之间的约束不等式,得到了“生长变形体的自由能与其密度成反比”的结论,并从热力学上对这一结果进行了定性的解释。最后,文中对几个尚待解决的问题进行了说明,并指出了今后的发展方向。  相似文献   

20.
Constitutive models for a general binary elastic-porous media are investigated by two complementary approaches. These models include both constituents treated as compressible/incompressible, a compressible solid phase with an incompressible fluid phase (hybrid model of first type), and an incompressible solid phase with a compressible fluid phase (hybrid model of second type). The macroscopic continuum mechanical approach uses evaluation of entropy inequality with the saturation condition always considered as a constraint. This constraint leads to an interface pressure acting in both constituents. Two constitutive equations for the interface pressure, one for each phase, are identified, thus closing the set of field equations. The micromechanical approach shows that the results of Didwania and de Boer can be easily extended to general binary porous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号