首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ni-Al hydrotalcite derived catalyst (Ni-Al2O3-HT) exhibited a narrow Ni particle-size distribution with an average particle size of 4.0 nm. Methanation of CO2 over this catalyst initiated at 225℃ and reached 82.5% CO2 conversion with 99.5% CH4 selectivity at 350℃, which was much better than its impregnated counterpart. Characterizations by means of CO2 microcalorimetry and 27 Al NMR indicated that large amount of strong basic sites existed on Ni-Al2O3-HT, originated from the formation of Ni-O-Al structure. The existence of strong basic sites facilitated the activation of CO2 and consequently promoted the activity. The combination of highly dispersed Ni with strong basic support led to its unique and high efficiency for this reaction.

Keywords  相似文献   

2.
A new SnO_2-Fe_2O_3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO_2 and Fe_2O_3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO_2-Fe_2O_3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g~(-1) which could be maintained after 50 cycles at 200 mA·g~(-1).Even at a high rate of2000 mA·g~(-1),the capacity was still remained at 656 mAh·g~(-1).  相似文献   

3.
Three series of CeO2/CuO samples were prepared by impregnation method and characterized by XRD, N2adsorption-desorption, temperatureprogrammed reduction(TPR), XPS and TEM techniques. In comparison with the samples prepared with CuO as initial support, the samples with Cu(OH)2as initial support have higher reducibilities and smaller relative TPR peak areas, and also larger specific surface areas at calcination temperatures of 400℃–600℃. As a result, Cu(OH)2is better than CuO as initial support for preferential oxidation of CO in excess H2(CO-PROX). The best catalytic performance was achieved on the sample calcined at 600℃ and with an atomic ratio of Ce/Cu at 40%. XPS analyses indicate that more interface linkages Ce-O-Cu could be formed when it was calcined at 600℃. And the atomic ratio of Ce/Cu at 40%led to a proper reducibility for the sample as illustrated by the TPR measurements.  相似文献   

4.
Pd-capped Mg_(78)Y_(22) thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to ~1725 mAh·g~(-1).Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.  相似文献   

5.
《中国化学》2014,(1):97-102
Phenylboronic acid (PBA) based glucose-responsive materials have attracted great interests in recent years for developing insulin delivery systems.It is desired to obtain PBA based materials that can response to glucose under physiological pH and understand the mechanism.By using 11B triple-quantum magic-angle spinning nuclear magnetic resonance (11B 3Q MAS NMR) measurements,the glucose-responsive mechanism of micelles self-assembled from poly(ethylene glycol)-b-ploy(acrylic acid-co-acrylamidophenylboronic acid) PEG-b-P(AA-co-AAPBA) is deeply investigated.Different configurations of phenylboronic acid during various steps of glucose-responsive behaviors are clearly analyzed in the 11B 3Q MAS NMR spectra and coordination between carboxyl and PBA is confirmed.By increasing the AA units in PEG-b-P(AA-co-AAPBA),the carboxyl can coordinate with PBA moieties and cause the glucose-responsiveness of micelles even in the weak acid environment.  相似文献   

6.
A novel Sr2CuInO3 S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type semiconductor character of the synthesized Sr2CuInO3 S was confirmed by Hall efficient measurement and Mott-Schottky plot analysis. First-principles density functional theory calculations(DFT) and electrochemical measurements were performed to elucidate the electronic structure and the energy band locations. It was found that the as-synthesized Sr2CuInO3 S photocatalyst has appreciate conduction and valence band positions for hydrogen and oxygen evolution, respectively. Photocatalytic hydrogen production experiments under a visible light irradiation(λ420 nm) were carried out by loading different metal and metal-like cocatalysts on Sr2CuInO3 S and Rh was found to be the best one among the tested ones.  相似文献   

7.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   

8.
Co(II)-salen was encapsulated in MIL-100(Cr) metal organic framework by "ship in a bottle" to synthesize a new electrocatalyst, Cosalen@MIL-100(Cr). The material was characterized by XRD, FT-IR, UV-Vis and N2-adsorption. The Cosalen@MIL-100(Cr) modified glassy carbon electrode exhibits a well-defined reduction peak at the potential of –0.21 V toward the oxygen reduction reaction(ORR) by cyclic voltammetry(CV) in pH = 6.84 phosphate buffer. Almost 400 mV positive shift of potential at Cosalen@MIL-100(Cr) modified electrode for ORR compared with that at bare glassy carbon, indicates that Cosalen@MIL-100(Cr) possesses excellent electrocatalytic activity. The transferred number of electrons for ORR was determined by chronocoulometry. The result suggests that the introduction of Co(II)-salen complex into MOF increases the electrocatalytic activity via a four-electron reduction pathway. Furthermore, this electrocatalyst exhibits good stability and reproducibility.  相似文献   

9.
To prepare manganese-containing spinel sulfur transfer agent with acid peptization, ultrasonic wave is used for the first time to modify the structure of sulfur transfer agent in this work. Mini fixed bed reactor was used to investigate the effect of ultrasonic power, time and temperature on the structure and oxidation adsorption performance of sulfur transfer agent and the adsorption kinetics and mechanism of SO2 were analyzed. SEM, TEM, XRD and N2 adsorption-desorption techniques were employed to characterize and analyse the function of sulfur transfer agent. The results indicated that manganese-containing spinel is a kind of promising sulfur transfer agent and exhibits higher sulfur capacity and desulfurization degree under the selected conditions of the ultrasonic wave power of 60%, and with the treatment period for 3 h at a temperature of 60 ℃.  相似文献   

10.
In this paper,we report on the preparation of Li_2FeSiO_4,sintered Li_2FeSiO_4,and Li_2FeSiO_4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH_4)_2Fe(SO_4)_2 as the iron source.The spindle-like Li_2FeSiO_4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li_2FeSiO_4-C composite was obtained by the hydrothermal treatment of spindle-like Li_2FeSiO_4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li_2FeSiO_4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g~(-1) at room temperature and 213 mAh·g~(-1) at45℃(0.1 C),revealing the potential application in lithium-ion batteries.  相似文献   

11.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   

12.
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g~(-1) at a current density of 167.5 mA·g~(-1)The improved capacity retention was obtained during the cell cycling as well.  相似文献   

13.
《天然气化学杂志》2014,(6):761-770
Highly coke-resisting ZrO2-decorated Ni/A1203 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-precipitation method (IM-DP). Nitrogen adsorption- desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetdc analysis, H2 temperature- programmed reduction and desorption, NH3 temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation (CI) and sequential impregnation (SI) methods, the Ni/A1203 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 mL.g-1 .h-1. In a 80 h life time test under the condition of 300-600 ~C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without ZrO2 reached 1.5 wt% after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of ZrO2 nanoparticles on the surface of NiO rather than A1203, which could he well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.  相似文献   

14.
The proton transfer isomerization of pyrazole and the water assisting effect by looping 1 to 4 water molecules on the singlet state potential energy surface have been investigated by using hybrid density functional theory method (B3PW91) with a 6-311++G^** basis set. Two mechanisms were proposed to explain the mono- and multi-water assisting effects, respectively. The reactants and products of all groups have been characterized on their potential energy surfaces. For the isomerizafion of monomolecule pyrazole, the isomeriz'ation energy barrier is 46.4 kcal·mol^-1. For the monohydration assisting mechanism, the reactant complex is connected to the product complex via two saddle points. The corresponding isomerization barriers are 46.7and 23.0 kcal·mol^-1, respectively. As to the multihydration assisting mechanism, the isomerization barriers are 12.0, 10.9 and 13.14 kcal·mol^-1 accordingly, when the number of water molecules is 2, 3 and 4, respectively. The multihydration assisting isomerization can occur in water-dominated environments, for example, in the organism, and thereby is crucial to energy transference. The deproton and dehydrogen energies of monomolecule pyrazole and various hydrated pyrazoles were calculated and then found much bigger than the isomerization barriers of their relative complexes, suggesting the impossibility of deprotonation or dehydrogenation. The isomerization of pyrazole is a proton-coupling-electron-migration process, but two different mechanisms are noticed, viz. σ- and π-type mechanisms. The π-bond of pyrazole participates in isomerization in the π-type mechanism, whereas only o-electron takes part in isomerization in the σ-type mechanism.  相似文献   

15.
程博闻 《高分子科学》2014,32(7):923-930
The effect of reverse pressure.on rheological behavior has been studied. The apparatus is a capillary rheometer with counter pressure chamber being held at a high reverse pressure by means of a cock. The results show that with the increase in temperature, the shear viscosity of hydrophilic PET is reduced. It is different that the effect of temperature on shear viscosity is varied under the condition of all shear rates or all pressures, and the effect is more prominent at 50 MPa or at 216 s-1. At the same time, the pressure coefficients decrease with increasing the shear rate and the temperature and tend to reach a constant value nearly at the temperature of 290 °C.  相似文献   

16.
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.  相似文献   

17.
Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective fluorescence quenching to Hg2+ among the other metal ions. A cation-π interaction between Hg〉 and the naphthalimide moiety was proposed and confirmed By the density tunetional theory(DFT).  相似文献   

18.
《天然气化学杂志》2014,(6):795-800
Catalytic performances of the CO2 reforming of toluene on Co/MgO catalysts with different cobalt loadings were evaluated in a fluidized-bed reactor. The results showed that the conversion of toluene and the stability of Co/MgO increased, but the apparent reaction rate decreased at the initial stage with increasing the amount of metallic Co formed from the reduction of Co/MgO catalysts at 700 ~C. The deactivation of Co/MgO catalysts was mainly resulted from that a part of the metallic Co was oxidized by CO2 and could not be re-reduced by H2 at reaction temperature. Therefore, the excess metallic Co on the higher Co loading catalysts was beneficial to the catalyst stability.  相似文献   

19.
Palladium catalysts are supported on TiO2, ZrO2, A12O3, Zro.sAlo.501.75 and TiO2-Zro.sAlo.501.75 prepared by co-precipitation method, re- spectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zro.sAlo.501.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (Tso) is 254 ℃, and the complete conversion temperature (Tgo) is 280 ℃; for CO, Tso is 84 ℃, and Tgo was 96 ℃. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelec- tron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zro.5Al0.501.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zro.sAl0.501.75 are maxima among the five supports.  相似文献   

20.
To prepare a high-performance epoxy resin with excellent thermal, chemical and corrosion stability, diaminoxanthone(DAX) was used to cure diglycidylether of bisphenol-A(DGEBA)-based epoxy resin and blend of DGEBA with functionalized Fe3O4 nanoparticles. Kinetic parameters of curing and thermal degradation of epoxy resin systems were estimated by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA), respectively. The 10% weight loss temperature has been increased from 340 °C to 366 °C and there was an increase in the char yield from 32.6% to 45.3% for the above systems. The corrosion performance of epoxy coated carbon steel was examined by potentiodynamic polarization, along with immersion test in 1.0 mol/L HCl solution. The results showed that epoxy resins cured with DAX had low tendency to corrosion. In addition, the cured epoxy resin containing 10% Fe3O4 had higher anticorrosion activity than bare DGEBA system. The results showed that functionalized Fe3O4 nanoparticles enhanced char formation and improved the thermal stability as well as anticorrosion activity of the resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号