首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyrrolyl and indolyl substituted allenylidene complexes of ruthenium have been prepared from the trapping of cationic trans-[Cl(dppm)(2)Ru=C=C=C=CH(2)](+) with various pyrroles or N-methylindole. The reaction is rationalized as involving regioselective attack of the organometallic electrophile on the electron-rich heterocycle followed by proton migration to the terminal =CH(2) entity of the intermediate butenynyl substituted sigma-complex. Pyrrolyl substituted allenylidene complexes have spectroscopic and electrochemical properties intermediate between those of amino and aryl substituted congeners and can thus be regarded as vinylogous aminoallenylidene complexes. We present spectroscopic evidence that the pyrrole pi-system is efficiently incorporated into the metallabutatriene chromophore including resonance Raman spectroscopy. According to our results, the respective frontier orbitals are delocalized across the entire ClRuC(3)(pyrrolyl) entity which defies any classification of the individual redox events as metal or ligand centered redox processes. This issue has been specifically addressed by spectroelectrochemistry. The structure of the 1-methylindole-3-yl complex has been determined by X-ray crystallography. Bond parameters along the ruthenium-allenylidene chain are intermediate between those of amino and aryl substituted congeners and support our conclusions drawn from the spectroscopic results. While still electron rich, pyrrolyl substituted allenylidene complexes are easily deprotonated to their conjugate bases, which are substituted butenynyl complexes. This has been exemplified with the tetrahydroindole derived complex 3f.  相似文献   

2.
Pentacarbonyl dimethylamino(methoxy)allenylidene tungsten, [(CO)5WCCC(OMe)NMe2] (1b), reacts with one equivalent of primary amines, H2NR, by selectively replacing the methoxy group to give dimethylamino(amino)allenylidene complexes, [(CO)5WCCC(NHR)NMe2]. When the amine is used in excess both terminal groups, OMe as well as NMe2, are replaced by the primary amino group giving [(CO)5WCCC(NHR)2 ]. The NHR substituent in these complexes may be modified by deprotonation with LDA followed by alkylation. The replacement of the methoxy group in 1b by a secondary amino group, NR2, can be achieved by a stepwise process. Addition of Li[NR2] to the Cγ atom of 1b affords an alkynyl tungstate. Subsequent OMe elimination induced by TMS-Cl/SiO2 yields the allenylidene complexes [(CO)5WCCC(NR2)NMe2]. When bidentate diamines are used instead of monoamines both substituents, OMe and NMe2, are replaced and allenylidene complexes are formed in which Cγ constitutes part of a 5-, 6-, or 7-membered heterocycle. The reaction of [(CO)5CrCCC(OMe)NMe2] (1a) with diethylene triamine affords an allenylidene complex with a heterocyclic endgroup carrying a dangling CH2CH2NH2 substituent. All reactions follow a strict regioselective attack of the nucleophile at Cγ and proceed with good to excellent yields. The addition of N-H to the CαCβ bond is not observed. By applying either one of these routes nearly any substitution pattern in bis(amino)allenylidene complex can be realized.  相似文献   

3.
4.
This paper reports a simple way to synthesize an allenylidene rhenium(VII) complex. The diimido adamantyl-thiolato allenylidene rhenium(VII) complex 2 was obtained through a metathetical reaction of phosphonioalkylidyne rhenium complex 1 with diphenylketene and also structurally analyzed with X-ray diffraction. Complex 2 is the first d0 allenylidene complex with structure information.  相似文献   

5.
6.
Ring closing metathesis of dienes in 1-butyl-3-methylimidazolium salts in the presence of ruthenium allenylidene salts as catalyst is described.  相似文献   

7.
Complex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed. In acetonitrile under reflux, the Os-C double bond of 2 undergoes hydrogenation to give 1,1-diphenylpropene and [Os{CH2CH(CH3)PiPr2(CH3CN)3(PiPr3)]BF4 (11), containing a metalated phosphine ligand. This reaction is a first-order process with activation parameters of DeltaH = 89.0 +/- 6.3 kJ mol-1 and DeltaS = -43.5 +/- 9.6 J mol-1 K-1. The X-ray structures of 2 and 3 are also reported.  相似文献   

8.
The present paper reports the unprecedented observation of a catalytic electrochemical proton reduction based on metallocumulene complexes. Manganese phenylvinylidene (η5-C5H5)(CO)(PPh3)MnCC(H)Ph (1) and diphenylallenylidene (η5-C5H5)(CO)2MnCCCPh2 (3) are shown to catalyze the reduction of protons from HBF4 into dihydrogen in CH2Cl2 or CH3CN media at −1.60 and −0.84 V (in CH3CN) vs. Fc, respectively. The working potential for 3 (−0.84 V vs. Fc in CH3CN) is the lowest reported to date for protonic acids reduction in non-aqueous media. The similar catalytic cycles disclosed here include the protonation of 1, 3 into the carbyne cations [(η5-C5H5)(CO)(PPh3)MnC-CH2Ph]BF4 ([2]BF4), [(η5-C5H5)(CO)2MnC-CHCPh2]BF4 ([4]BF4) followed by their reduction to the corresponding 19-electron radicals 2, 4, respectively. Both carbyne radicals undergo a rapid homolytic cleavage of the Cβ-H bond generating an H-radical producing molecular hydrogen with concomitant recovery of the neutral metallocumulenes thereby completing a catalytic cycle.  相似文献   

9.
Heterocyclic carbene complexes are accessible from π-donor-substituted allenylidene complexes, [(CO)5CrCCC(NMe2)Ph] (1) and [(CO)5CrCCC(O-endo-Bornyl)OEt] (4), and various dinucleophiles by 1,2,3-diheterocyclization. The reaction of 1 with 1,2-dimethylhydrazine gives the 1,2-dimethylpyrazolylidene complex (2) in high yield in addition to small amounts of the α,β-unsaturated carbene complex [(CO)5CrC(NMe2)-C(H)C(NMe2)Ph] (3). The analogous reaction of 4 with 1,2-dimethylhydrazine affords the 1,2-dimethylpyrazolylidene complex (5) and, via displacement of the Cγ-bound ethoxy substituent, the hydrazinoallenylidene complex [(CO)5CrCCC(O-endo-Bornyl){NMe-N(H)Me}] (6). Treatment of 6 with catalytic amounts of acids induces cyclization to 5. On addition of 1,1-dimethylhydrazine to 1 the zwitterionic pyrazolium-5-ylidene complex (7) is formed. The reaction of 1 with 1,2-diaminocyclohexane affords a octahydro-benzo[1,4]diazepinylidene complex (10) and, via intermolecular substitution, a binuclear bisallenylidene complex (11). Thiazepinylidene complexes (12-14), containing 7-membered N/S-heterocyclic carbene ligands, are formed highly selectively in the reaction of 1 with 2-aminoethanethiol or related cysteine derivatives by a substitution/cyclization sequence. The analogous reaction of 1 with homocysteine methylester yields a thiazocanylidene complex (15). All new heterocyclic carbene ligands are strong donors exhibiting σ-donor/π-acceptor ratios similar to those of the known imidazolylidene complexes. On photolysis of 2 and 12 in the presence of triphenylphosphine, the corresponding cis-carbene tetracarbonyl triphenylphosphine complexes (16 and 17) are formed. The solid state structure of complexes 2, 7, 14, 15, and 16 is established by X-ray structural analysis.  相似文献   

10.
The synthesis and structural characterization of the first ruthenium phosphoramidite allenylidene complexes that are chiral at the metal are described. The precursor complex [RuCl(Ind)(PPh3)2] (Ind = indenyl anion) was reacted with 1 equiv of different chiral phosphoramidite ligands L to give complexes of the general formula [RuCl(Ind)(PPh3)L]. These complexes are stereogenic at the metal and at the ligand L. One of these complexes was obtained in diastereomeric purity, and was subsequently converted to allenylidene complexes of the general formula [RuCCCR′R(Ind)(PPh3)L]+PF6 (R = R′ = Ph; R = Ph, R′ = Me) in diastereomeric purity. As shown by X-ray, the chiral information is completely transferred from the precursor complex to the allenylidenes, which is of importance for potential catalytic applications.  相似文献   

11.
The author's studies aimed at activation of terminal alkynes by metal complexes and reactivity patterns and selective preparations of unsaturated carbene, allenylidene, and cumulenylidene derivatives of (arene)ruthenium complexes are reviewed.The review is based on the lecture given at Workshop «Modern Problems of Organometallic Chemistry» (May 1994).Translated fromIzyestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 827–838, May, 1995.  相似文献   

12.
HW Ma  YC Lin  SL Huang 《Organic letters》2012,14(15):3846-3849
Consecutive cyclization reactions of phenyl propargyl alcohols 1 and 2 are catalyzed by [Ru]NCCH(3)(+) ([Ru] = Cp(PPh(3))(2)Ru) in cosolvent CHCl(3)/MeOH at 60 °C, to afford the fused cyclic compounds 11a (R = Me) and 10a (R = Me), respectively.  相似文献   

13.
Displacement of tetrahydrofuran in [(CO)5M(THF)] (M=Cr, W) by the anion [CCC(X)Y] (X=O; NR; Y=NR′2, Ph) followed by alkylation of the resulting metalate with [R″3O]BF4 (R″=Me, Et) offers a convenient and versatile route to π-donor-substituted allenylidene complexes, [(CO)5MCCC(XR″)Y]. Allenylidene complexes in which the terminal carbon atom of the allenylidene ligand constitutes part of a heterocycle are likewise accessible by this reaction sequence. Reaction of [(CO)5M(THF)] with Li[CCC(NMe)Ph] and subsequent protonation of the metalate afford [(CO)5MCCC(NMeH)Ph] in high yield. As indicated by the spectroscopic data of the compounds and the X-ray analyses of three representative examples, these allenylidene complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalisation of the electron pair at nitrogen towards the metal center. Dimethylamine reacts with the amino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (7a) by addition of the amine across the CαCβ bond to give selectively the E-alkenyl(amino)carbene complex [(CO)5CrC(NMe2)CHC(NMe2)Ph] (12). In contrast, the reaction of dimethylamine with the amino(methoxy)allenylidene complex [(CO)5CrCCC(NMe2)OMe] (1a) proceeds by addition of the amine to the Cγ atom and subsequent elimination of methanol to give the substitution product [(CO)5CrCCC(NMe2)2] (13). Triphenylphosphane neither adds to the Cα nor the Cγ atom of 7a but upon irradiation displaces a CO ligand to form a cis-allenylidene(tetracarbonyl)phosphane complex 15.  相似文献   

14.
Copper-catalyzed reaction of [Cp(PPh3)NiCl] with the terminal alkynes H-CC-C(O)R (R = O-Menthyl, NMe2, Ph) yields the alkynyl complexes [Cp(PPh3)Ni-CC-C(O)R]. Subsequent O-methylation with either [Me3O]BF4 or MeSO3CF3 affords cationic allenylidene complexes, [Cp(PPh3)NiCCC(OMe)R]+X¯ (X = BF4, SO3CF3). N-Alkylation of Cp(PPh3)Ni-pyridylethynyl complexes likewise gives cationic allenylidene complexes. [Cp(PPh3)Ni-CC-C(CH)4N] adds BF3 at nitrogen. Modification of the ligand sphere in these nickel allenylidene complexes is possible by replacing PPh3 by PMe3 in the alkynyl complex precursors. The first allenylidene(carbene)nickel cation, [Cp(SIMes)NCCC(OMe)NMe2]+, is accessible by successive reaction of [Cp(SIMes)NiCl] with H-CC-C(O)NMe2 and [Me3O]BF4. By the analogous sequence an allenylidene complex containing the chelating (diphenylphosphanyl)ethylcyclopentadienyl ligand can be prepared. DFT Calculations were carried out on the allenylidene complex cation [Cp(PPh3)NiCCC(OMe)NMe2]+ and on its precursor, the alkynyl complex [Cp(PPh3)Ni-CC-C(O)NMe2]. Based on the spectroscopic data and a X-ray structure analysis the bonding in the new nickel allenylidene complexes is best represented by several resonance forms, an alkynyl resonance form considerably contributing to the overall bond.  相似文献   

15.
A series of well accessible cationic ruthenium allenylidene complexes of the general type [(eta6-arene)(R3P)RuCl(=C=CR'2)]+ X- is described which constitute a new class of pre-catalysts for ring closing olefin metathesis reactions (RCM) and provide an unprecedented example for the involvement of metal allenylidenes in catalysis. They effect the cyclization of various functionalized dienes and enynes with good to excellent yields and show a great tolerance towards an array of functional groups. Systematic variations of their basic structural motif have provided insights into the essential parameters responsible for catalytic activity which can be enhanced further by addition of Lewis or Bronsted acids, by irradiation with UV light, or by the adequate choice of the "non-coordinating" counterion X-. The latter turned out to play a particularly important role in determining the rate and selectivity of the reaction. A similarly pronounced influence is exerted by remote substituents on the allenylidene residue which indicates that this ligand (or a ligand derived thereof) may remain attached to the metal throughout the catalytic process. X-ray crystal structures of the catalytically active allenylidene complexes 3b.PF6 and 15.OTf as well as of the chelate complex 10 required for the preparation of the latter catalyst are reported.  相似文献   

16.
Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra) modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy?. The catalytic performance was investigated in RCM reaction (ring closing metathesis) of benchmark substrates such as diallyltosylamide and diethyl diallylmalonate.  相似文献   

17.
The fragmentation pathways of allenylidene and carbene complexes have been studied using FAB mass spectrometry in comparison with thermal analyses (TGA, DrTG and DTA). Both the decomposition modes are investigated and the possible fragmentation pathways are suggested. The use of mass and thermal analyses (TGA and DTA) in the analyses of allenylidene and carbene complexes allowed the characterization of the fragmentation pathways in MS. The major pathway includes successive loss of carbon monoxide followed by fragmentation of the organic part of the allenylidene or carbene molecules. This is also confirmed by thermogravimetric analysis (TGA) where the first step involves the loss of carbon monoxide followed by the organic ligand. The nature of each step; exothermic or endothermic, is also studied using DTA technique. The kinetic parameters of the thermal decomposition are also studied using the Coates-Redfern method.  相似文献   

18.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

19.
Treatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes. The reactions with phenylacetylene and cyclohexylacetylene afford [Os[(E)-CH=CHR](=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (R = Ph (5), Cy (6)), containing an alkenyl ligand beside the allenylidene, while the reaction with acetylene in dichloromethane at -20 degrees C gives the hydride-allenylidene-pi-alkyne [OsH(=C=C=CPh2)(eta2-HC[triple bond]CH)(P(i)Pr3)2]BF4 (7), with the alkyne acting as a four-electron donor ligand. In acetonitrile under reflux, complexes 5 and 6 are transformed into the osmacyclopentapyrrole compounds [Os[C=C(CPh2CR=CH)CMe=NH](CH3CN)2]BF4 (R = Ph (8), Cy (9)), as a result of the assembly of the allenylidene ligand, the alkenyl group, and an acetonitrile molecule. The X-ray structures of 2, 5, and 8 are also reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号