首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single domain size of BaFe12O19 powder with crystallite sizes less than 200 nm was produced using a citric acid precursor method. Fe3+ and Ba2+, in a molar ratio of 12, were chelated by COOH in an aqueous solution. After ethylene glycol additions, esterification, dehydration, and calcination led to the formation of ester-derived BaFe12O19 powder. High pH and/or high citric acid contents in the starting solution are required to complete chelate metallic ions in the solution and to form pure barium ferrite powder at 1073 K. Pure single magnetic domain BaFe12O19 particles of M(30 kOe)≈54 emu/g, Mr≈28 emu/g, and Hc≈3.7 kOe were produced using [citric acid]/[metallic ions]=1.5 and pH7.  相似文献   

2.
Low-field negative magnetization, of the order of −10−1 emu/g-Oe, from 4.2 K up to room temperature and higher (350 K), and coercive-field magnetization reversal are both present in Cr(3−x)FexX4 for X=S, Se, Te and x=0 to 3, and for Cr5Te8 and Cr7Te8. For Cr2FeSe4 the zero-field-cooled (ZFC) magnetization is negative for 5 Oe and below. To obtain a more detailed knowledge of the magnetic phases involved in the observed magnetization versus temperature M(T) curves, we obtained and studied neutron diffraction (n.d.) scans on the compound Cr2FeSe4, taken at 14 temperatures from 4.2 to 300 K. For this same n.d. sample, the temperature for magnetization reversal of value −3×10−4 emu/g-Oe is 80 K in 40 Oe applied field, then the reversal disappears for 65 Oe applied field. The complex magnetic interactions responsible for this reversal are revealed in the hysteresis curves.  相似文献   

3.
徐洁  焦吉庆  李强  李山东 《中国物理 B》2017,26(1):10701-010701
A special Fe_3O_4nanoparticles–graphene(Fe_3O_4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe_3O_4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization M_S of approximately 48 emu/g, coercivity H_C of 200 Oe, and remanence M_r of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe_3O_4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe_3O_4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.  相似文献   

4.
Nanoparticles of zinc-doped maghemite were prepared using ultrasonic radiation. As a precursor, a suspension of maghemite in an alkaline aqueous solution of zinc nitrate at pH 9 was sonicated. The zinc-doped maghemite nanoparticles were investigated by X-ray diffraction, Mössbauer spectroscopy, high-resolution electron microscopy (HREM) and SQUID magnetometry. The Mössbauer measurements, which cover the temperature range 4.2 K to room temperature, were acquired in zero field and an applied field of 5 T. The results show that by using ultrasound radiation, zinc Zn2+ can substitute for Fe3+ up to a composition close to zinc ferrite (ZnFe2O4), which has a random distribution of Fe3+ ions over both A and B sublattices in the spinel structure with an inversity parameter of δ = 0.322. This leads to a maximum saturation magnetization (Ms) of 64.1 emu/g at 300 K and 73.5 emu/g at 2 K.  相似文献   

5.
李文宇  霍格  黄岩  董丽娟  卢学刚 《物理学报》2018,67(17):177501-177501
采用水热控制合成法,以六水三氯化铁、柠檬酸三钠和尿素为原料,聚丙烯酰胺为稳定剂, 200?C下反应12 h制备得到了超顺磁性空心Fe_3O_4纳米微球.通过X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的结构和形貌进行表征,并采用振动样品磁强计测试了样品的磁性能.结果表明:所得样品为具有尖晶石结构的Fe_3O_4纳米微球,尺寸为160 nm左右,呈分等级结构,即整个微球由粒径约18 nm的初级晶粒自组装堆叠而成;室温下表现为典型的超顺磁性,且饱和磁化强度为73.3 emu/g (1 emu/g=1 A·m~2/kg),这种高饱和磁化强度可以由其初级晶粒晶化程度高且粒径较大以及这种特殊的二次自组装结构进行解释.这种Fe_3O_4纳米微球为疏松多孔的空心球状结构,具有粒径分布均匀、分散性良好和超顺磁性的特点,在药物靶向输运和肿瘤热疗中有潜在的应用.  相似文献   

6.
By undertaking AC electrochemical impedance experiments on yttria stabilised zirconia electrolytes with polished Y1Ba2Cu3O7−x electrodes, the activation energy for oxygen ion transport within the bulk of Y1Ba2Cu3O7−x, in air, over the temperature range 823 K–1043 K, was determined to be 1.50 ± 0.05 eV. At 1000 K the oxygen ionic conductivity was calculated to be around one order of magnitude lower than that in yttria stabilised zirconia. Typical calculated values were σ=5×10−5 (ω cm)−1 and 6×10−3 (ω cm)−1 at the respective temperatures 823 K and 1043 K. By employing a similar cell but with Y1Ba2Cu3O7−x paste electrodes, oxygen transfer between the Y1Ba2Cu3O7−x and the electrolyte was found to occur via a surface diffusional processes. Over the temperature range 873 K–1098 K, in air, the activation energy for in-diffusion at the surface was found to be 1.4±0.1 eV and that for out-diffusion at the surface to be 1.76±0.05 eV.  相似文献   

7.
为了提高太阳能电池的性能,研究磁性纳米粒子在外加磁场的作用下对聚合物太阳能电池有源层P3HT:PCBM成膜及太阳能电池性能的影响。本文采用热分解法制备了磁性Fe3O4纳米粒子,将不同质量分数的Fe3O4纳米粒子掺入到P3HT:PCBM溶液中,旋涂后在外加磁场的作用下自组成膜。通过TEM、XRD对制备的Fe3O4纳米粒子进行表征,并利用偏光显微镜、原子力显微镜对成膜质量进行探究。结果表明,采用热分解法制备的Fe3O4纳米粒子直径在10 nm左右,在外加磁场作用下,Fe3O4纳米粒子对成膜有一定的调控作用。当Fe3O4纳米粒子掺杂质量分数为1%时,太阳能电池器件的开路电压增加3.77%,短路电流增加24.93%,光电转换效率提高7.82%。  相似文献   

8.
It was observed that the nanocrystallites of BaFe12O19 formed at 140°C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (Tc), a direct measuring of the strength of superexchange interaction of Fe3+–O2−–Fe3+, increased from 410°C for the nanoparticles prepared without an external field applied to 452°C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Mössbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles.  相似文献   

9.
Reversible and irreversible domain wall (DW) motions have been investigated in La0.7Sr0.3MnO3 ceramic samples using frequency-response complex permeability with various amplitudes of AC field. We also examine the effects of temperature in the range from 293 to 368 K and transverse DC magnetic field with a maximum of 4.40×105 A/m on the real part of permeability (μ′). Two relaxations corresponding to reversible wall motions and domain rotations occur in low and high frequency regions, respectively. The irreversible DW displacements can be activated as the amplitude larger than the pinning field of 3 A/m, leading to an increase in μ′. The μ′ obeys a Rayleigh law at the temperature below 343 K or under DC field of less than 4.22×104 A/m. The Rayleigh constant η increases from 5.45×10−2 to 1.54×10−1 (A/m)−1 as the temperature rises from 293 to 343 K, and η decreases from 5.58×10−2 to 3.67×10−2 (A/m)−1 with increasing DC field from 1.99×103 to 4.22×104 A/m.  相似文献   

10.
Nanocrystalline CoFe2O4 with an average grain size of about 40 nm was successfully prepared by a modified citrate-gel method. At temperatures of 3 and 300 K, the measured coercive fields are 0.43 and 0.07 T and the magnetizations at 7 T are 89 and 83 emu/g, respectively. At room temperature, the longitudinal and transversal magnetostriction values are −130 and 70 ppm, respectively. The contribution of a disordered magnetic phase was detected by the occurrence of a peak in the ac-susceptibilities curves at around 250 K. The temperature dependence of the field-cooled and zero field-cooled low-field magnetization showed a larger irreversibility below this temperature. This disordered phase behaves like a spin-glass, which is coexisting with the ferrimagnetically ordered main phase  相似文献   

11.
Aligned and random fibres of strontium hexaferrite (SrM, SrFe12O19) and barium hexaferrite (BaM, BaFe12O19) were manufactured by blow spinning from an aqueous inorganic sol–gel precursor, which was then fired to give the hexagonal ferrite fibre. Their magnetic properties were studied by VSM, investigating the evolution of these properties with firing and measurement temperature, and in particular the effects of fibre alignment. It has been predicted that aligned ferrite fibres will demonstrate an enhanced magnetisation along the axis of alignment with respect to perpendicular to the axis, and this has been demonstrated here for the first time. The optimum firing temperature was 1000 °C, at which point they still had submicron grains. In BaM random fibres Ms=63.8 emu g−1 and Hc=428.1 kA m−1, and in SrM random fibres Ms=63.3 emu g−1 and Hc=452.8 kA m−1, high values for polycrystalline materials. Fibres aligned parallel to the applied field had saturation magnetisation (Ms) values equal to those of the random fibres, whilst fibres aligned perpendicular to the field had Ms values 62% and 75% lower, for BaM and SrM, respectively. There was no change in coercivity (Hc) between random or aligned fibres of any orientation, and fibres aligned 45° and parallel to H appeared identical. Therefore, properties along the axis of alignment were superior when compared to measurements perpendicular to the axis of alignment, giving a directionality to the magnetisation in an otherwise randomly oriented ferrite material.  相似文献   

12.
The uniform antimony-rich surface layer on Fe2O3 was carried out via thermal spreading of Sb2O3 and Sb2O4. TG–DTA results indicate that the oxidation temperature of Sb2O3 was decreased ca. 100 K due to thermal spreading effect. Although Sb2O4 is almost catalytically inert for oxidation of isobutane and Fe2O3 is a typical non-selective catalyst for this reaction, the formation of antimony-rich layer suppresses the combustion reactions and favors the partial oxidation reactions. When Sb2O4 instead of Sb2O3 was used as antimony resource, the enrichment of antimony on Fe2O3 surface was much lower. However, the reaction atmosphere of isobutane oxidation enhances antimony spreading over Fe2O3 surface. According to Mars–Van Krevelen mechanism, some Sb2O4 in catalysts could be intermediately reduced into Sb2O3 during reaction of isobutene oxidation, which thermal spreading is much easier. As shown by Raman results, the Sb2O4 that has been spread on Fe2O3 surface is probably amorphous.  相似文献   

13.
In this study, nanocrystalline Co–Ni–Mg ferrite powders with composition Co_(0.5)Ni_(0.5-x)Mg_xFe_2O_4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co–Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), field emission scanning electron microscopy(FESEM), and vibrating sample magnetometry(VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ~ 32 nm to ~ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ~ 57.35 emu/g to~ 61.49 emu/g and ~ 603.26 Oe to~ 684.11 Oe(1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization Ms and Mr suggest that the optimum composition is Co_(0.5)N_(i0.4)Mg_(0.1)Fe_2O_4 that can be applied to high-density recording media and microwave devices.  相似文献   

14.
We report magnetic susceptibility and specific heat measurements on polycrystalline samples of the 30 K superconductor Ba0·6K0·4BiO3. Normal-state magnetization measurements indicate a Pauli-paramagnetic susceptibility of χpauli = 2.3 × 10−5 emu/mole, from which we infer a value for the density of states at the Fermi level of N(0) = 8.6 × 10 21ev−1cm.−3 Specific heat measurements performed between 1.6 K and 40 K indicate that considerable lattice softening occurs at low temperatures; the effective Debye temperature drops from 280 K at 35 K to 210 K at 4 K, implying that soft phonon modes are present in this compound. This result indicates that conventional phonon-mediated interactions may be responsible for the high transition temperature exhibited by Ba0·6K0·4BiO3.  相似文献   

15.
We report the influence of the Sn doping on the magnetotransport properties of the LaMnO3+δ perovskite. Two series of samples with nominal LaSnxMn1−xO3+δ (I series) and La(1−x)/(1+x)SnxMn1−xO3+δ (II series) compositions (x=0, 0.025, 0.05 and 0.10) were prepared at Ts=750°C. The M(T) data under 0.01 and 0.5 T for the I series reveal a depressed magnetization as the Sn content increases suggesting the presence of magnetic clusters with a superparamagnetic behavior. Resistivity measurements indicate an insulator material for all Sn content independently of the applied magnetic field. On the contrary, for the II series the M(T) and M(H) data reveal FM behavior and an improvement of the magnetization as Sn increases. These samples show magnetoresistance. The magnetotransport properties are discussed in terms of the presence of A-site cation vacancies.  相似文献   

16.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

17.
Magnetization measurements on the Fe60Mn5Ni35 and Fe50Mn15Ni35 alloy samples were carried out in the temperature range 80T300 K and in magnetic fields up to 8 kOe. The Fe60Mn5Ni35 was found to order ferromagnetically with a Curie temperature, Tc, above 300 K. From the temperature dependence of the spontaneous magnetization, Ms, it was concluded that the magnetic behavior of Fe60Mn5Ni35 follows Wohlfarth theory of weak itinerant ferromagnet. The Fe50Mn15Ni35 sample exhibits a magnetic phase transition from ferromagnetism to paramagnetism at Tc=242 K. The critical amplitudes and critical exponents (β, γ and δ) have been determined by using Arrott plots, Kouvel–Fisher method and scaling plots of the reduced magnetization and reduced magnetic field. The values of β, γ and δ are discussed and compared with the results obtained for various theoretical models and also with the experimentally determined values for related systems obtained by others.  相似文献   

18.
In our work single crystals of Mg4.5Na7(P2O7)4 were prepared, pulverized, pressed into pellets and sintered in order to measure the electrical conductivity of polycrystalline specimens. The conductivity was also measured on glassy specimens obtained by the melting of previously prepared crystals. The electrical conductivities at 25°C with values of the order of 10−16 Ω−1 cm−1 for polycrystalline samples and a value of the order of 10−14 Ω−1 cm−1 for glass, show that the glassy phase of Mg4.5Na7(P2 because of its greater molar volume and loosely packed structure, is a better matrix for ionic motion.  相似文献   

19.
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state.  相似文献   

20.
An alternative approach for obtaining the LiMn2O4 spinel phase is provided by the use of the sol-gel method in aqueous solution. The main electrochemical properties of the sol-gel LiMn2O4 phase are reported. In addition to chronopotentiometric and voltammetric experiments, the kinetics of the electrochemical insertion–extraction of lithium in LixMn2O4 (0.25<x<1) has been investigated using ac impedance spectroscopy. The strong variation of the chemical diffusion coefficient DLi vs x, in the range 10−8–10−11 cm2 s−1 (DLi is found to be maximum for x=0.55) is critically discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号