首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The extracts from the aerial parts of Portulaca quadrifida have been reported to show the total flavonoid content, antioxidant and antibacterial activities.

Results

Our results revealed that the total flavonoid content of methanol and chloroform extracts is 2.335?±?0.0097 and 1.7312?±?0.0082 mgQE/100 g respectively. The two extracts also showed good antioxidant activity and total phenolic content as well as weak to moderate antibacterial activity against some bacteria.

Conclusions

The extracts the aerial parts of the P. quadrifida showed good total flavonoid content, DPPH radical scavenging activity and antibacterial activity. In addition to this, the extracts also showed the presence of some important compounds by phytochemical analysis.
  相似文献   

2.

Background

Green approach in synthesizing metal nanoparticles has gain new interest from the researchers as metal nanoparticles were widely applied in medical equipment and household products. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. A green synthetic route for the production of stable silver nanoparticles (Ag-NPs) by using aqueous silver nitrate as metal precursor and Artocarpus elasticus stem bark extract act both as reductant and stabilizer is being reported for the first time.

Results

The resultant Ag-NPs were characterized by UV–vis spectroscopy, powder X-Ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infra-red (FT-IR). The morphological study by TEM and SEM shows resultant Ag-NPs in spherical form with an average size of 5.81 ± 3.80, 6.95 ± 5.50, 12.39 ± 9.51, and 19.74 ± 9.70 nm at 3, 6, 24, and 48 h. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The FT-IR spectrum shows prominent peaks appeared corresponds to different functional groups involved in synthesizing Ag-NPs.

Conclusions

Ag-NPs were synthesized using a simple and biosynthetic method by using methanolic extract of A. elasticus under room temperature, at different reaction time. The diameters of the biosynthesis Ag-NPs depended on the time of reaction. Thus, with the increase of reaction time in the room temperature the size of Ag-NPs increases. From the results obtained in this effort, one can affirm that A. elasticus can play an important role in the bioreduction and stabilization of silver ions to Ag-NPs.
Graphical abstract: Figure illustrates stabilization of silver nanoparticles after formation by A. elasticus stem bark extract.
  相似文献   

3.
A sensitive, specific, reproducible and optimized high performance liquid chromatography with fluorescence detection (HPLC-FLD) method for the determination of bergapten in rat plasma was established and applied to the pharmacokinetic and bioavailability study in rat after oral and intravenous administration of bergapten. The method was also successfully applied to the excretion study of bergapten after an oral administration of bergapten at a dose of 15 mg kg?1 to rats. The sample preparation was achieved using liquid–liquid extraction. Isoimperatorin was used as the internal standard (IS). The analytes were detected by using fluorescence detection at an excitation and emission wavelength of 288 and 478 nm, respectively. Using aqueous formic acid (0.1 %, v/v) and acetonitrile as the mobile phase, the chromatographic separation was achieved on a Hedera? ODS column at a flow rate of 1 mL min?1. The lower limit of quantitation (LLOQ) of bergapten was 2 ng mL?1. The HPLC-FLD method was successfully applied to the pharmacokinetic, bioavailability and excretion study of bergapten in rats.
Graphical abstract An high performance liquid chromatography with fluorescence detection (HPLC-FLD) method for the pharmacokinetic and bioavailability study in rat after administration of bergapten.
  相似文献   

4.

Background

The aim of the current work was to determine thermo dynamical properties of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde.

Results

The temperature dependence of saturated vapor pressure of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde was determined by Knudsen’s effusion method. The results are presented by the Clapeyron–Clausius equation in linear form, and via this form, the standard enthalpies, entropies and Gibbs energies of sublimation and evaporation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly by the corresponding standard molar combustion enthalpy, obtained using bomb calorimetry combustion.

Conclusions

Determination of the thermodynamic properties for these compounds may contribute to solving practical problems pertaining optimization processes of their synthesis, purification and application and it will also provide a more thorough insight regarding the theoretical knowledge of their nature.
Graphical abstract: Generalized structural formula of investigated compounds and their formation enthalpy determination scheme in the gaseous state
  相似文献   

5.

Background

One of the most popular techniques for cancer detection is the nuclear medicine technique. The present research focuses on Platelet-12-lipoxygenase (P-12-LOX) as a promising target for treating and radio-imaging tumor tissues. Curcumin was reported to inhibit this enzyme via binding to its active site.

Results

A novel curcumin derivative was successfully synthesized and characterized with yield of 74%. It was radiolabeled with the diagnostic radioisotope technetium-99m with 84% radiochemical yield and in vitro stability up to 6 h. The biodistribution studies in tumor bearing mice confirmed the high affinity predicted by the docking results with a free binding energy value of (ΔG ?50.10 kcal/mol) and affinity (13.64 pki) showing high accumulation in solid tumor with target/non-target ratio >6.

Conclusion

The newly synthesized curcumin derivative, as a result of a computational study on platelet-12 lipoxygenase, showed its excellent free binding energy (?G ?50.10 kcal/mol) and high affinity (13.64 pKi). It could be an excellent radio-imaging agent that targeting tumor cells via targeting of P-12-LOX.
Graphical abstract This novel curcumin derivative was successfully synthesized and radiolabeled with technetium-99m and biologically evaluated in tumor bearing mice that showed high accumulation in solid tumor with target/non-target ratio >6 confirming the affinity predicted by the docking results. Predicted binding mode of a new curcumin derivative in complex with 12-LOX active site. b Curcumin itself in the 12-LOX active site biological distribution of 99mTc-curcumin derivative complex in solid tumor bearing Albino mice
  相似文献   

6.

Background

In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities.

Results and discussion

The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.

Conclusion

The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50?=?71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50?=?74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
  相似文献   

7.

Background

The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

Methodology

All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

Results, discussion and conclusion

Compound W6 (MICsa, st, kp?=?5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an?=?5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC?=?8.16 µM). The anticancer screening demonstrated that compound W17 (IC50?=?4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50?=?7.69 µM).
  相似文献   

8.

Background

Salicylic acid and its derivatives are widely used drugs with potential toxicity. The main areas of salicylate derivatives determination are biological liquids and pharmaceuticals analysis.

Results

Silica-titania xerogel has been used for solid phase spectrophotometric determination of various salicylate derivatives (salicylate, salicylamide, methylsalicylate). The reaction conditions influence on the interaction of salicylate derivatives with silica-titania xerogels has been investigated; the characteristics of titanium(IV)-salicylate derivatives complexes in solid phase have been described. The simple solid phase spectrophotometric procedures are based on the formation of xerogel incorporated titanium(IV) colored complexes with salicylate derivatives. A linear response has been observed in the following concentration ranges 0.1–5, 0.5–10 and 0.05-4.7 mM for salicylate, salicylamide, and methylsalicylate, respectively. The proposed procedures have been applied to the analysis of human urine, synthetic serum, and pharmaceuticals.

Conclusions

The simple solid phase spectrophotometric procedures of salicylate derivatives determination based on the new sensor materials have been proposed for biological liquids and pharmaceuticals analysis.
Graphical abstractComplexation of titanium (IV), incorporated in silica-titania xerogels (Si-Ti), with salicylate derivatives (L) resulting in yellow-colored xerogels (Si-Ti/Ln) has been proposed for salicylate derivatives determination in biological liquids and pharmaceuticals
  相似文献   

9.

Background

Blood–tissue partition coefficients indicate how a chemical will distribute throughout the body and are an important part of any pharmacokinetic study. They can be used to assess potential toxicological effects from exposure to chemicals and the efficacy of potential novel drugs designed to target certain organs or the central nervous system. In vivo measurement of blood–tissue partition coefficients is often complicated, time-consuming, and relatively expensive, so developing in vitro systems that approximate in vivo ones is desirable. We have determined such systems for tissues such as brain, muscle, liver, lung, kidney, heart, skin, and fat.

Results

Several good (p < 0.05) blood–tissue partition coefficient models were developed using a single water–solvent system. These include blood–brain, blood–lung, blood–heart, blood–fat, blood–skin, water–skin, and skin permeation. Many of these partition coefficients have multiple water–solvent systems that can be used as models. Several solvents—methylcyclohexane, 1,9-decadiene, and 2,2,2-trifluoroethanol—were common to multiple models and thus a single measurement can be used to estimate multiple blood–tissue partition coefficients. A few blood–tissue systems require a combination of two water–solvent partition coefficient measurements to model well (p < 0.01), namely: blood–muscle: chloroform and dibutyl ether, blood–liver: N-methyl-2-piperidone and ethanol/water (60:40) volume, and blood–kidney: DMSO and ethanol/water (20:80) volume.

Conclusion

In vivo blood–tissue partition coefficients can be easily estimated through water–solvent partition coefficient measurements.
Graphical abstract: Predicted blood-brain barrier partition coefficients coloured by measured log BB value
  相似文献   

10.

Background

Discovery of potent inhibitors of urease (jack bean) enzyme is the first step in the development of drugs against diseases caused by ureolytic enzyme.

Results

Thirty-two derivatives of barbituric acid as zwitterionic adducts of diethyl ammonium salts were synthesized. All synthesized compounds (4az and 5as) were screened for their in vitro inhibition potential against urease enzyme (jack bean urease). The compounds 4i (IC50 = 17.6 ± 0.23 µM) and 5l (IC50 = 17.2 ± 0.44 µM) were found to be the most active members of the series, and showed several fold more urease inhibition activity than the standard compound thiourea (IC50 = 21.2 ± 1.3 µM). Whereas, compounds 4ab, 4de, 4gh, 4j4r, 4x, 4z, 5b, 5e, 5k, 5n5q having IC50 values in the range of 22.7 ± 0.20 µM–43.8 ± 0.33 µM, were also found as potent urease inhibitors. Furthermore, Molecular Dynamics simulation and molecular docking studies were carried out to analyze the binding mode of barbituric acid derivatives using MOE. During MD simulation enol form is found to be more stable over its keto form due to their coordination with catalytic Nickel ion of Urease. Additionally, structural–activity relationship using automated docking method was applied where the compounds with high biological activity are deeply buried within the binding pocket of urease. As multiple hydrophilic crucial interactions with Ala169, KCX219, Asp362 and Ala366 stabilize the compound within the binding site, thus contributing greater activity.

Conclusions

This research study is useful for the discovery of economically, efficient viable new drug against infectious diseases.
Graphical abstract: STD. Thiourea (IC50 = 21.2 ± 1.3 µM)
  相似文献   

11.

Background

Re(I) tricarbonyl complexes exhibit immense potential as fluorescence imaging agents. However, only a handful of rhenium complexes have been utilized in biological imaging. The present study describes the synthesis of four novel rhenium complexes, their characterization and preliminary biological studies to assess their potential as biological imaging agents.

Results

Four facial rhenium tricarbonyl complexes containing a pyridyl triazine core, (L1 = 5,5′(3-(2-pyridyl)-1,2,4-triazine-5,6-diyl)-bis-2-furansulfonic acid disodium salt and L2 = (3-(2- pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′′-disulfonic acid sodium salt) have been synthesized by utililzing two different Re metal precursors, Re(CO)5Br and [Re(CO)3(H2O)3]OTf in an organic solvent mixture and water, respectively. The rhenium complexes [Re(CO)3(H2O)L1]+ (1), Re(CO)3L1Br (2), [Re(CO)3(H2O)L2]+ (3), and Re(CO)3L2Br (4), were obtained in 70–85% yield and characterized by 1H NMR, IR, UV, and luminescence spectroscopy. In both H2O and acetonitrile, complexes display a weak absorption band in the visible region which can be assigned to a metal to ligand charge transfer excitation and fluorescent emission lying in the 650–710 nm range. Cytotoxicity assays of complexes 1, 3, and 4 were carried out for rat peritoneal cells. Both plant cells (Allium cepa bulb cells) and rat peritoneal cells were stained using the maximum non-toxic concentration levels of the compounds, 20.00 mg ml?1 for 1 and 3 and 5.00 mg ml?1 for 4 to observe under the epifluorescence microscope. In both cell lines, compound concentrated specifically in the nuclei region. Hence, nuclei showed red fluorescence upon excitation at 550 nm.

Conclusions

Four novel rhenium complexes have been synthesized and characterized. Remarkable enhancement of fluorescence upon binding with cells and visible range excitability demonstrates the possibility of using the new complexes in biological applications.
Graphical abstract Micrograph of rat peritoneal cells incubated with novel rhenium complex under epifluorescence microscope.
  相似文献   

12.
This research work was executed to determine chemical composition, anti-oxidant and anti-microbial potential of the essential oils extracted from the leaves and stem of Daphne mucronata Royle. From leaves and stem oils fifty-one different constituents were identified through GC/MS examination. The antioxidant potential evaluated through DPPH free radical scavenging activity and %-inhibition of peroxidation in linoleic acid system. The stem’s essential oil showed the good antioxidant activity as compared to leaves essential oil. Results of Antimicrobial activity revealed that both stem and leaves oils showed strong activity against Candida albicans with large inhibition zone (22.2?±?0.01, 18.9?±?0.20 mm) and lowest MIC values (0.98?±?0.005, 2.44?±?0.002 mg/mL) respectively. Leaves essential was also active against Escherichia coli with inhibition zone of 8.88?±?0.01 mm and MIC values of 11.2?±?0.40 mg/mL. These results suggested that the plant’s essential oils would be a potential cradle for the natural product based antimicrobial as well as antioxidant agents.
  相似文献   

13.

Background

Although poly(N-acyl dithieno[3,2-b:2′,3′-d]pyrrole)s have attracted great attention as a new class of conducting polymers with highly stabilized energy levels, hyperbranched polymers based on this monomer type have not yet been studied. Thus, this work aims at the synthesis of novel hyperbranched polymers containing N-benzoyl dithieno[3,23,2-b:2′,3′-d]pyrrole acceptor unit and 3-hexylthiophene donor moiety via the direct arylation polymerization method. Their structures, molecular weights and thermal properties were characterized via 1H NMR and FTIR spectroscopies, GPC, TGA, DSC and XRD measurements, and the optical properties were investigated by UV–vis and fluorescence spectroscopies.

Results

Hyperbranched conjugated polymers containing N-benzoyl dithieno[3,23,2-b:2′,3′-d]pyrrole acceptor unit and 3-hexylthiophene donor moiety, linked with either triphenylamine or triphenylbenzene as branching unit, were obtained via direct arylation polymerization of the N-benzoyl dithieno[3,23,2-b:2′,3′-d]pyrrole, 2,5-dibromo 3-hexylthiophene and tris(4-bromophenyl)amine (or 1,3,5-tris(4-bromophenyl)benzene) monomers. Organic solvent-soluble polymers with number-average molecular weights of around 18,000 g mol?1 were obtained in 80–92% yields. The DSC and XRD results suggested that the branching structure hindered the stacking of polymer chains, leading to crystalline domains with less ordered packing in comparison with the linear analogous polymers. The results revealed that the hyperbranched polymer with triphenylbenzene as the branching unit exhibited a strong red-shift of the maximum absorption wavelength, attributed to a higher polymer stacking order as a result of the planar structure of triphenylbenzene.

Conclusion

Both hyperbranched polymers with triphenylamine/triphenylbenzene as branching moieties exhibited high structural order in thin films, which can be promising for organic solar cell applications. The UV–vis absorption of the hyperbranched polymer containing triphenylbenzene as branching unit was red-shifted as compared with the triphenylamine-containing polymer, as a result of a higher chain packing degree.
  相似文献   

14.

Background

The plant Alisma plantago-aquatica Linnaeus, which is widely distributed in southwest of China, is the main material of traditional Chinese medicine “Zexie”. It was used as folk medicine for immune-modulation, anti-tumor, anti-inflammatory and antibacterial. Previous chemical studies on A. plantago-aquatica reported the identification of triterpenes, diterpenes, sesquiterpenes, steroids, alkaloids and phenolic acid. Terpenes and phenolic acid were regard as major secondary metabolites from this medicine plant.

Results

A new phenolic acid, plantain A (1), along with four known compounds (25) were isolated and identified from A. plantago-aquatica by extensive chromatographic and spectrometric methods. In the present study, the levels of TNF-α, IL-1β, COX-2, PEG2 and TGF-β1 were increased in model group rats, whereas on treatment with the isolated compound (1 and 4) at 50 mg/kg, there was a significant decrease in the cytokine levels. Therefore, the anti-CNP effect of 1 and 4 may be related to their anti-inflammatory properties.

Conclusions

A new phenolic acid and four known phenolic compounds were isolated from A. plantago-aquatica. Moreover, compounds 1 and 4 shows significant anti-chronic prostatitis activity in rats.
  相似文献   

15.

Background

Polychlorinated biphenyls (PCBs) are a group of environmental persistent organic pollutants, which can be metabolized into a series of metabolites, including hydroxylated metabolites (OH-PCBs) in biota. Nineteen of 209 PCB congeners can form chiral stable isomers. However, atropisomeric determination of the hydroxylated metabolites of these chiral PCBs has never been reported by LC methods. In this work, a novel HPLC-MS method was developed to detect five chiral OH-PCBs (4OH-PCB91, 5OH-PCB91, 4OH-PCB95, 5OH-PCB95 and 5OH-PCB149) using HPLC-MS without a derivatization step.

Results

The influences of column-type, column temperature, flow rate and ratio of the mobile phase on the atropisomeric separation were investigated in detail. In the final method, calibration curves, based on peak areas against concentration, were linear in a range of 1–100 ng mL-1 of five chiral OH-PCBs with correlation coefficients ranging from 0.9996 to 0.9999 for all atropisomers of OH-PCBs. The relative standard deviations measured at the 10.0 ng mL-1 level for atropisomers of five chiral OH-PCBs were in the range of 0.60-7.55% (n?=?5). Calculated detection limits (S/N?=?3) of five chiral OH-PCBs were between 0.31 and 0.60 ng mL-1 for all OH-PCB atropisomers.

Conclusion

This HPLC-MS method was developed to detect chiral OH-PCBs and further successfully applied to measure OH-PCB atropisomer levels and enantiomeric fractions (EFs) in rat liver microsomal samples. The results from LC-MS method were highly consistent with those from GC-ECD method. It is the first time to report these OH-PCB atropisomers detected in microsomes by HPLC-MS. The proposed method might be applied also to detect chiral OH-PCBs in environmental samples and for metabolites of PCBs in vivo.
  相似文献   

16.

Background

An alarming requirement for finding newer antidiabetic glitazones as agonists to PPARγ are on its utmost need from past few years as the side effects associated with the available drug therapy is dreadful. In this context, herein, we have made an attempt to develop some novel glitazones as PPARγ agonists, by rational and computer aided drug design approach by implementing the principles of bioisosterism. The designed glitazones are scored for similarity with the developed 3D pharmacophore model and subjected for docking studies against PPARγ proteins. Synthesized by adopting appropriate synthetic methodology and evaluated for in vitro cytotoxicity and glucose uptake assay. Illustrations about the molecular design of glitazones, synthesis, analysis, glucose uptake activity and SAR via 3D QSAR studies are reported.

Results

The computationally designed and synthesized ligands such as 2-(4-((substituted phenylimino)methyl)phenoxy)acetic acid derivatives were analysed by IR, 1H-NMR, 13C-NMR and MS-spectral techniques. The synthesized compounds were evaluated for their in vitro cytotoxicity and glucose uptake assay on 3T3-L1 and L6 cells. Further the activity data was used to develop 3D QSAR model to establish structure activity relationships for glucose uptake activity via CoMSIA studies.

Conclusion

The results of pharmacophore, molecular docking study and in vitro evaluation of synthesized compounds were found to be in good correlation. Specifically, CPD03, 07, 08, 18, 19, 21 and 24 are the candidate glitazones exhibited significant glucose uptake activity. 3D-QSAR model revealed the scope for possible further modifications as part of optimisation to find potent anti-diabetic agents.
  相似文献   

17.
Tuberculosis is an air-borne disease, mostly affecting young adults in their productive years. Here, Ligand-based drug design approach yielded a series of 23 novel 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives. The required building block of imidazopyridine was synthesized from commercially available 5,5-diaminopyridine-3-ol followed by four step sequence. Derivatives were prepared using various substituted aromatic aldehydes. All the synthesized analogues were characterized using NMR, Mass analysis and also screened for in vitro antitubercular activity against Mycobacterium tuberculosis (H37Rv). Four compounds, 5c (MIC-0.6 μmol/L); 5g (MIC-0.5 μmol/L); 5i (MIC-0.8 μmol/L); and 5u (MIC-0.7 μmol/L) were identified as potent analogues. Drug receptor interactions were studied with the help of ligand docking using maestro molecular modeling interphase, Schrodinger. Here, computational studies showed promising interaction with other residues with good score, which is novel finding than previously reported. So, these compounds may exhibit in vivo DprE1 inhibitory activity.
  相似文献   

18.
A simple solvent-free protocol for the preparation of flunixin, a potent non-narcotic, non-steroidal anti-inflammatory drugs is reported using boric acid as catalyst. Its salt, flunixin meglumine are then prepared under reflux in EtOH. This sustainable method are then extended for the synthesis of a series of 2-(arylamino) nicotinic acid derivatives. The present protocol combines non-hazardous neat conditions with associated benefits like excellent yield, straightforward workup, and use of readily available and safe catalyst in the absence of any solvent, which are important factors in the pharmaceutical industry. The pathway for catalytic activation of 2-chloronicotic acid with boric acid was also investigated using Gaussian 03 program package.
  相似文献   

19.

Background

An increased incidence of fungal infections, both invasive and superficial, has been witnessed over the last two decades. Candida species seem to be the main etiology of nosocomial fungal infections worldwide with Candida albicans, which is commensal in healthy individuals, accounting for the majority of invasive Candida infections with about 30-40% of mortality.

Results

New aromatic and heterocyclic esters 5a-k of 1-aryl-3-(1H-imidazol-1-yl)propan-1-ols 4a-d were successfully synthesized and evaluated for their anti-Candida potential. Compound 5a emerged as the most active congener among the newly synthesized compounds 5a-k with MIC value of 0.0833 μmol/mL as compared with fluconazole (MIC value >1.6325 μmol/mL). Additionally, molecular modeling studies were conducted on a set of anti-Candida albicans compounds.

Conclusion

The newly synthesized esters 5a-k showed more potent anti-Candida activities than fluconazole. Compounds 7 and 8 revealed significant anti-Candida albicans activity and were able to effectively satisfy the proposed pharmacophore geometry, using the energy accessible conformers (Econf?<?20 kcal/mol).
  相似文献   

20.

Background

Proper roasting is crucial to flavor, color, and texture development in the final product. In recent years, several research studies have been carried out to establish the best optimum roasting conditions for some common edible nuts such as; hazelnut, peanut, and pistachio nut. Although roasting is an important process for nuts and oilseeds, there is little or no information on the development of color, aroma, and textural changes in Terminalia catappa nuts during roasting.

Results

Results showed that color formation and browning index were significantly (P < 0.05) influenced by the roasting temperature and time of roasting. However, the fracturability of nuts was significantly (P < 0.05) affected by both temperature of roasting and time as well as pH. The optimized results showed that the best response was reached when the roasting time was 29.9 min, roasting temperature 174.5°C, and pH 6.08, respectively. Moreover, the 3400–15603400–1560°Cm-1 carbonyl region for carboxylic acid, alkenes, esters, and amines was found to provide a flavor-print of the roasted tropical almond nut. While, increase in temperature did not produce new carbonyl compounds, it however led to higher concentration of compounds. Scanning electron microscopy of the almond nuts showed that the starch granules were embedded in tissues.

Conclusion

These results showed that roasting temperature and time of roasting were the main variables that significantly affected the physicochemical properties of roasted tropical almond nuts. Moreover the flavor-prints for the roasted nut were produced in the 3400–1560°Cm-1 carbonyl region.
Graphical Abstract Effect of roasting conditions on fracturability and structural morphology of tropical almond nuts (T. catappa).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号