首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了胶束电动毛细管色谱结合电化学安培检测同时分析中药马齿苋中多巴胺和去甲肾上腺素的方法。考察了缓冲液的浓度、pH值、十二烷基硫酸钠(SDS)浓度以及工作电极电势对分离检测的影响。在优化的条件下,多巴胺和去甲肾上腺素在1.0×10-6~5 0×10-4mol/L范围内有良好线性,浓度检测限(S/N=3)分别为8 7×10-7mol/L和4 2×10-7mol/L,质量检测限分别为1 45fmol和0 41fmol。该方法组分定性可靠,不需要衍生处理,选择性好。将该法应用于中药马齿苋样品的分析,获得了较好的结果。  相似文献   

2.
刘雪  王兰  樊阳  刘凤杰 《化学通报》2012,(5):458-462
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。  相似文献   

3.
制备了镍纳米粒子-离子液体修饰电极,在0.1 mol/L磷酸缓冲溶液(pH 6.0)中研究了多巴胺(DA)在修饰电极上的电化学行为.与裸电极相比,DA在该修饰电极上的氧化还原电位明显降低,氧化还原反应的峰电流明显增大,DA的峰电流与其浓度在2.0×10~(-8) ~1.0×10~(-4) mol/L范围内呈良好的线性关系,检出限为6.5×10~(-9) mol/L.该修饰电极对抗坏血酸具有明显的抗干扰能力.  相似文献   

4.
A nonenzymatic electrochemical sensor for glucose and fructose was fabricated that contained a glassy carbon electrode modified with a copper oxide (CuO)/multiwalled carbon nanotube (MWCNT) nanocomposite. The electrochemical properties of the CuO/MWCNT‐modified glassy carbon electrode were investigated. Two distinguishable anodic peaks were observed around 0.30 and 0.44 V corresponding to the oxidation of glucose and fructose, respectively, at the surface of the modified electrode. The detection limits for glucose and fructose were both 0.04 mmol/L. The sensor was used to simultaneously determine the concentrations of glucose and fructose in hydrolyzed sucrose samples, and to measure glucose in blood serum samples, demonstrating its potential as a nonenzymatic carbohydrate sensor.  相似文献   

5.
利用电化学还原方法制备纳米金/石墨烯修饰玻碳电极,研究了多巴胺(DA)在该修饰电极上的电化学行为,建立了电化学测定多巴胺的新方法。结果表明,在磷酸盐缓冲溶液中,此修饰电极对多巴胺的电化学响应具有很好的催化作用。利用差示脉冲伏安技术对多巴胺的电化学氧化进行定量分析,多巴胺的氧化峰电流与其浓度在1.0×10-7~1.0×10-5mol/L范围内呈良好的线性关系,检测限低至4.0×10-8mol/L。该修饰电极适于多巴胺的分析检测。  相似文献   

6.
以Mn掺杂的ZnS(Mn-ZnS)室温磷光(RTP)量子点的磷光为信号,以2-溴甲基苯硼酸与4,4ˊ-联吡啶为原料合成的硼酸基联吡啶盐(BBV)为受体,带负电的量子点与带正电BBV通过静电作用形成Mn-ZnS/BBV纳米复合材料,Mn-ZnS量子点磷光猝灭,加入果糖,BBV与果糖形成阴离子硼酸酯,降低了对量子点猝灭效率,RTP恢复.考察了时间、pH值对Mn掺杂的ZnS QDs/BBV纳米复合材料磷光强度的影响,在最优条件下,此传感器检测果糖的线性范围为0.05~1.00 mmol/L,检出限为0.01 mmol/L,相关系数r为0.99.本磷光分析法简便快速、灵敏度高,有望应用于食品、医药行业中果糖含量的检测分析.  相似文献   

7.
A room-temperature ionic liquid N-butylpyridinium hexafluorophosphate was used as a binder to construct an ionic liquid modified carbon paste electrode, which was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The ionic liquid carbon paste electrode (IL-CPE) showed enhanced electrochemical response and strong analytical activity towards the electrochemical oxidation of dopamine (DA). A pair of well-defined quasireversible redox peaks of DA appeared, with the redox peaks located at 215 mV (E pa) and 151 mV (E pc) (vs. the saturated calomel electrode, SCE) in pH 6.0 phosphate buffer solution. The formal potential (E 0′) was calculated as 183 mV (vs. SCE) and the peak-to-peak separation as 64 mV. The electrochemical behavior of DA on the IL-CPE was carefully investigated. Under the optimal conditions, the anodic peak currents increased linearly with the concentration of DA in the range 1.0 × 10−6–8.0 × 10−4 mol/L and the detection limit was calculated as 7.0 × 10−7 mol/L (3σ). The interferences of foreign substances were investigated and the proposed method was successfully applied to the determination of DA injection samples. The IL-CPE fabricated was sensitive, selective and showed good ability to distinguish the coexisting ascorbic acid and uric acid.  相似文献   

8.
The development of a quercetin‐graphene composite‐modified glassy carbon electrode (Qu/GH/GCE) for the selective and sensitive detection of dopamine (DA) is described in this paper. To fabricate the Qu/GH/GCE, graphene (GH) was first coated onto the surface of a glassy carbon electrode (GCE) and then quercetin (Qu) was electrodeposited on the GH matrix. Transmission electron microscopy (TEM) was used to characterize the morphology of the obtained GH and Qu/GH, and the electrochemical properties of the modified electrode were studied using electrochemical techniques. The as‐prepared Qu/GH/GCE occupied a synthetic property between GH and Qu. The common overlapped electrochemical oxidation peaks of DA and AA were completely separated and a remarkable increasing electron‐oxidation current of DA occurred on the Qu/GH/GCE, which enabled the sensitive and selective electrochemical detection of DA in the presence of ascorbic acid (AA) with peak difference of ca. 452 mV between DA and AA. The peak current obtained at 0.174 V (vs. saturated calomel electrode, SCE) from differential pulse voltammetry (DPV) is linearly dependent on the DA concentration in the range from 3.0×10?8 to 4.0×10?4 mol/L with a detection limit of 1.0×10?8 mol/L. Furthermore, the Qu/GH/GCE exhibits good reproducibility and stability, and has been used for the determination of DA in samples of rat’s striatum tissue with satisfactory results.  相似文献   

9.
A novel polymer modified electrode is discussed in this paper. This resulting electrode can catalyze remarkably toward the electrochemical oxidations of dopamine (DA) and ascorbic acid (AA). Moreover, it can clearly discriminate the electrochemical oxidations of DA from that of AA based on their semi-derivative voltammograms. Hence, a simultaneous determination of DA and AA based on semi-derivative voltammetry at a poly(toluidine blue) modified electrode is suggested. The detection linear range for DA is 0.4 micromol L(-1)-1.5 mmol L(-1), and AA 0.2 micromol L(-1)-2.4 mmol L(-1), respectively. The resulting modified electrode was tentatively used to determine DA and AA in brain tissue.  相似文献   

10.
《Electroanalysis》2017,29(10):2307-2315
A disposable sandwich‐type electrochemical sensor for selective detection of glucose was established. The primary receptor, 3‐aminophenylboronic acid was grafted covalently onto the surface of screen‐printed carbon electrodes through an in situ‐generated diazo‐reaction. Glucose was first captured by boronic acid group on the electrode, followed by captureing an electroactive ferroceneboronic acid (FcBA) as the secondary receptor to form bidentate glucose‐boronic complex. Electrochemical impedance spectroscopy was applied to characterize the construction of sandwich‐type disposable sensor. In the sandwich assay, current response of captured FcBA on the electrode was dependent on the concentration of glucose. The sandwich assay showed higher selectivity for glucose than that for fructose, mannose, galactose and other electroactive interferences including uric acid, ascorbic acid and dopamine, and exhibited a dynamic concentration range of glucose from 0.5 to 20.0 mmol L−1. The disposable sensor demonstrated a good reproducibility with 2.2 % relative standard deviation (RSD). In addition, the disposable glucose sensor was used in detection of the trace glucose in the clinical urine samples.  相似文献   

11.
A nano-composite of DNA/poly(p-aminobenzensulfonic acid) bi-layer modified glassy carbon electrode as a biosensor was fabricated by electro-deposition method. The DNA layer was electrochemically deposited on the top of electropolymerized layer of poly(p-aminobenzensulfonic acid) (Pp-ABSA). Scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectrum were used for characterization. It demonstrated that the deposited Pp-ABSA formed a 2-D fractal patterned nano-structure on the electrode surface, and which was further covered by a uniform thin DNA layer. Cyclic voltammetry and electrochemical impedance spectrum were used to characterize the deposition, and demonstrated the conductivity of the Pp-ABSA layer. The biosensor was applied to the detection of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison with DNA and Pp-ABSA single layer modified electrodes, the composite bi-layer modification provided superior electrocatalytic actively towards the oxidation of DA, UA and AA, and separated the originally overlapped differential pulse voltammetric signals of UA, DA and AA oxidation at the bare electrode into three well-defined peaks at pH 7 solution. The peak separation between AA and DA, AA and UA was 176 mV and 312 mV, respectively. In the presence of 1.0 mM AA, the anodic peak current was a linear function of the concentration of DA in the range 0.19-13 microM. The detection limit was 88 nM DA (s/n=3). The anodic peak current of UA was also a linear function of concentration in the range 0.4-23 microM with a detection limit of 0.19 microM in the presence of 0.5 mM AA. The superior sensing ability was attributed to the composite nano-structure. An interaction mechanism was proposed.  相似文献   

12.
A new convenient colorimetric sensor for fructose based on anti-aggregation of citrate-capped gold nanoparticles(Au NPs) is presented. 4-Mercaptophenylboronic acid(MPBA) induces the aggregation of Au NPs, leading to a color change from red to blue. Fructose as a potent competitor has strong affinity for MPBA and a borate ester is formed between MPBA and fructose. There is an obvious color change from blue to red with increasing the concentration of fructose. The anti-aggregation effect of fructose on Au NPs was seen by the naked eye and monitored by UV–vis spectra. Our results showed that the absorbance ratio(A_(519)/A_(640)) was linear with fructose concentration in the range of 0.032–0.96 μmol/L(R~2= 0.996), with a low detection limit of 0.01 μmol/L(S/N = 3). Notably, a highly selective recognition of fructose was shown against other monosaccharide and disaccharide(glucose, mannose, galactose,lactose and saccharose). With anti-aggregation assays higher selectivity is achievable. The results of this work provide a rapid method for evaluating the quantitative analysis of fructose in human plasma at physiologically meaningful concentrations and at neutral pH. The proposed procedure can be used as an efficient method for the precise and accurate determination of fructose.  相似文献   

13.
A platinum (Pt) electrode modified by single-walled carbon nanotubes (SWNTs) and phytic acid (PA) was investigated by voltammetric methods in buffer solution. The PA-SWNTs/Pt-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA) and uric acid (UA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA, AA and UA could be separated by electrochemical techniques, and the interferences from AA and UA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.2-10 μM and the detection limit of the DA oxidation current was determined to be 0.08 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode can be used to determine DA without interference from AA and UA, while ensuring good sensitivity, selectivity, and reproducibility.  相似文献   

14.
邵姗  张剑  邓凯强  杨杰  杨绍明 《应用化学》2022,39(7):1098-1107
以Ni、Co为金属节点,5,10,15,20-四(4-羧基苯基)卟啉(TCPP)为金属配体,合成了金属有机框架材料(MOFs)作催化材料,以还原氧化石墨烯(rGO)和乙炔黑(ACET)作信号放大材料,制备出一种灵敏度高、稳定性高、选择性好的无酶电化学传感器,用于检测多巴胺(DA)。通过一步水热法制成rGO-NiCoTCPP,再用滴涂法将其修饰在玻碳电极上,即得GCE/rGO-NiCoTCPP电极,最后将ACET滴涂在此电极上,得到GCE/rGO-NiCoTCPP/ACET电极。利用红外光谱、扫描电子显微镜和电化学阻抗对此电极进行了表征,并将不同修饰电极放在磷酸缓冲液中进行循环伏安表征。GCE/rGO-NiCoTCPP/ACET传感器对DA具有较宽线性范围(0.4 ~160 μmol/L)及较高的电流响应(检出限为0.198 μmol/L),有望应用于实际样品中DA的检测。  相似文献   

15.
以金属有机骨架材料ZIF-67为前驱体,经氩气气氛高温处理制备得到了Co2O4与碳复合材料(Co3O4/C)。通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)对Co3O4/C的结构和形貌进行了表征。Co3O4/C保持了前驱体ZIF-67正十二面体形貌,并发生明显皱缩现象。采用循环伏安、恒电位等方法研究了Co3O4/C修饰玻碳电极(GCE)对多巴胺(DA)的传感性能。结果表明:在多巴胺浓度在5~500μmol/L范围内,Co3O4/C/GCE的氧化峰电流与浓度存在良好的线性关系,检测灵敏度高达283.09μA·L/(mmol·cm2)。此外,Co3O4/C/GCE还展示出良好的抗干扰能力、重现性和稳定性。  相似文献   

16.
王敏  王炯  王凤彬  夏兴华 《电化学》2012,18(5):450-456
本文采用一步法制备了1-芘丁酸/石墨烯复合物(PBA/G),研究了其电化学性质. 采用铁氰化钾和亚铁氰化钾电化学探针测定了电化学阻抗滴定曲线,确定了PBA/G的表观pKa为6.2. 此外,将葡萄糖氧化酶(GOD)共价键合在PBA/G表面构建了葡萄糖电化学传感器,其电化学响应与葡萄糖浓度(5 mmol L-1浓度范围内)呈线性,检测限为0.085 mmol L-1. 实验还测定了固定在PBA/G表面的GOD的表观米氏常数为5.40 mmol L-1,表明固定化的GOD对葡萄糖有较高的催化活性。  相似文献   

17.
An ionic liquid modified carbon paste electrode (CILE) was prepared with 1‐hexylpyridine hexafluorophosphate (HPPF6) and used as a substrate electrode. Then hexagonal boron nitride (BN) nanosheet, myoglobin (Mb) and Nafion were fixed on the electrode surface by coating method to get a new‐style chemically modified electrode (Nafion/Mb/BN/CILE). The morphology and crystal phase of BN nanosheet were characterized by SEM, TEM and XRD. UV‐Vis and FT‐IR results showed that Mb retained its original conformation in the composite modified film. In phosphate buffer solutions (PBS) with pH 3.0, cyclic voltammetry (CV) was performed to investigate the direct electrochemical behaviour of Mb. A pair of quasi‐reversible redox reaction peaks was obtained on the CV curve, proving that BN nanosheet had good biocompatibility and could accelerate electron transfer between Mb and electrode surface. Electrocatalytic reduction of trichloroacetic acid (TCA) was investigated, which was further applied to TCA detection. The catalytic reduction peak current at ?0.355 V depended linearly on the TCA concentration in the range of 0.2~30.0 mmol/L with the equation of Ipc (μA)=6.340 C (mmol/L)+0.305 (r=0.998), and the detection limit was 0.05 mmol/L (3 σ).  相似文献   

18.
利用循环伏安法将金纳米粒子和钼氧化物共同电沉积在玻碳电极表面,制备了金纳米粒子和钼氧化物复合膜修饰电极,利用SEM和XPS研究了MoOx/AuNPs复合膜的表面形态,并研究其修饰电极对葡萄糖的电催化氧化过程. 首次提出了阳极扫描极化反向催化伏安法,即在反向扫描过程中纯的催化氧化电流通过扣减背景电流的方法被提取出来. 显著提高电流测量灵敏度改善了信噪比. 制备的MoOx/AuNPs复合膜修饰电极在0.01-4.0 mmol/L对葡萄糖具有线性响应,电流灵敏度为2.35 mA·L/(mmol·cm2),检测限为9.01 μmol/L(信噪比为3).  相似文献   

19.
甲基紫与肝素钠结合反应的电化学研究及分析应用   总被引:6,自引:0,他引:6  
孙伟  焦奎  丁雅勤 《化学学报》2006,64(5):397-402
应用电化学分析法研究了在pH 1.5的酸性反应条件下肝素钠与甲基紫的结合反应. 甲基紫在滴汞电极上有一个不可逆的还原峰, 峰电位为-0.58 V (vs. SCE), 加入肝素钠后峰电位发生正移且峰电流下降, 利用电化学方法对电极反应过程进行了研究, 结果发现两者结合后生成了一种电化学活性的复合物, 导致溶液的电化学参数发生了变化, 求解出结合比为1∶3, 结合常数为2.47×1014, 对结合反应条件和电化学检测条件进行了优化, 在最佳条件下峰电流的降低同肝素钠的浓度在0.2~4.0 mg/L范围内呈线性关系, 线性回归方程为∆Ip (nA)=-724.9+1741.4c (mg/L) (n=11, γ=0.994), 检测限为0.072 mg/L. 将本方法应用于肝素钠样品的测定, 结果令人满意. 对常见干扰物质的影响进行了考察, 表明本方法具有较好的选择性.  相似文献   

20.
《Analytical letters》2012,45(1):33-45
Abstract

The electrochemical behaviors of the interaction of pyronine B (PB) with DNA were investigated on the mercury drop working electrode. In pH 2.0 Britton‐Robinson (B‐R) buffer solution, PB can be easily reduced on the mercury electrode and had a well‐defined voltammetric reductive wave at ?0.86 V (vs. saturated calomelelectrode, SDE). On the addition of DNA into the PB solution, the reductive peak current of PB decreased with the positive movement of the peak potential and without the appearance of new peaks. The result showed that a new supramolecular complex was formed via intercalation of PB with DNA, which can't be reduced on the Hg electrode. The conditions of interaction and the electrochemical detection were carefully investigated. Under the optimal conditions the decrease of peak current was proportional to the concentration of DNA in the range of 1.0~30.0 mg/L with the linear regression equation as ΔIp″(nA)=51.84C (mg/L)–94.97 (n=13, γ=0.993) and the detection limit was 0.90 mg/L. The interaction mechanism was discussed with the aggregation of DNA‐PB supramolecular complex and the stoichiometry of the supramolecular complex was calculated with the binding number as 3 and the binding constant as 1.61×1015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号