首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The signature coding for M active users out of T total users over a multiple access OR channel is considered. The mathematical problem is equivalent to the M-cover-free problem of extremal set theory. We survey the upper and lower bounds on the minimal code word length n(T,M), and present some code constructions. According to the current state of the theory, for 1MT
so there is a huge gap between the upper and lower bounds. Moreover, there is no known construction approaching the upper bound.  相似文献   

2.
We study questions of robustness of linear multiple objective problems in the sense of post-optimal analysis, that is, we study conditions under which a given efficient solution remains efficient when the criteria/objective matrix undergoes some alterations. We consider addition or removal of certain criteria, convex combination with another criteria matrix, or small perturbations of its entries. We provide a necessary and sufficient condition for robustness in a verifiable form and give two formulae to compute the radius of robustness.  相似文献   

3.
4.
In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructions and improves several existing duality relations. The second approach utilizes polarity between a convex polyhedral set and the epigraph of its support function. It leads to a parametric dual problem and yields strong duality relations, including those of geometric duality.  相似文献   

5.
We introduce and formalise a scheduling problem that consists in determining an optimum policy (i.e. one that minimises total inventory holding costs) to produce n part-types using a system that is able to share its capacity at all times among these part-types and that switches between an active and an inactive state for pre-known periods of time. Consequently, when active the system must produce enough reserves to meet the demand during the inactive interval. We show that there is always a simple optimum policy in which the production of the part-types is prioritised and, provided the units are properly defined, the optimum priority ordering corresponds to a non-decreasing sequence of the unit holding costs of the part-types.  相似文献   

6.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   

7.
The paper deals with the finite-element analysis of second-order elliptic eigenvalue problems when the approximate domains Ωh are not subdomains of the original domain . The considerations are restricted to piecewise linear approximations. Special attention is devoted to the convergence of approximate eigenfunctions in the case of multiple exact eigenvalues. As yet the approximate solutions have been compared with linear combinations of exact eigenfunctions with coefficients depending on the mesh parameter h. We avoid this disadvantage.  相似文献   

8.
We formulate the multiple knapsack assignment problem (MKAP) as an extension of the multiple knapsack problem (MKP), as well as of the assignment problem. Except for small instances, MKAP is hard to solve to optimality. We present a heuristic algorithm to solve this problem approximately but very quickly. We first discuss three approaches to evaluate its upper bound, and prove that these methods compute an identical upper bound. In this process, reference capacities are derived, which enables us to decompose the problem into mutually independent MKPs. These MKPs are solved euristically, and in total give an approximate solution to MKAP. Through numerical experiments, we evaluate the performance of our algorithm. Although the algorithm is weak for small instances, we find it prospective for large instances. Indeed, for instances with more than a few thousand items we usually obtain solutions with relative errors less than 0.1% within one CPU second.  相似文献   

9.
Starting with a problem in wireless telecommunication, we are led to study the multiple knapsack problem with assignment restrictions. This problem is NP-hard. We consider special cases and their computational complexity. We present both randomized and deterministic LP based algorithms, and show both theoretically and computationally their usefulness for large-scale problems.  相似文献   

10.
11.
In this paper, a classical Stefan problem with a prescribed and small time-dependent temperature at the boundary is studied. By using a multiple time-scales perturbation method, it is shown analytically how the moving boundary profile is influenced by the prescribed temperature at the boundary and the initial conditions. Only a few exact solutions are available for this type of problems and it turns out that the constructed approximations agree very well with these exact solutions. In particular, approximations of solutions for this type of problems, with periodic and decaying temperatures at the boundary, are constructed. Furthermore, these approximations are valid on a long time scale, and seems to be not available in the literature.  相似文献   

12.
The multiple container loading cost minimization problem (MCLCMP) is a practical and useful problem in the transportation industry, where products of various dimensions are to be loaded into containers of various sizes so as to minimize the total shipping cost. The MCLCMP can be naturally formulated as a set cover problem and solved using column generation techniques, which is a popular method for handling huge numbers of variables. However, the direct application of column generation is not effective because feasible solutions to the pricing subproblem is required, which for the MCLCMP is NP-hard. We show that efficiency can be greatly improved by generating prototypes that approximate feasible solutions to the pricing problem rather than actual columns. For many hard combinatorial problems, the subproblem in column generation based algorithms is NP-hard; if suitable prototypes can be quickly generated that approximate feasible solutions, then our strategy can also be applied to speed up these algorithms.  相似文献   

13.
14.
15.
Lateral transshipments are an effective strategy to pool inventories. We present a Semi-Markov decision problem formulation for proactive and reactive transshipments in a multi-location continuous review distribution inventory system with Poisson demand and one-for-one replenishment policy. For a two-location model we state the monotonicity of an optimal policy. In a numerical study, we compare the benefits of proactive and different reactive transshipment rules. The benefits of proactive transshipments are the largest for networks with intermediate opportunities of demand pooling and the difference between alternative reactive transshipment rules is negligible.  相似文献   

16.
17.
In the Distance Constrained Multiple Vehicle Traveling Purchaser Problem (DC-MVTPP) a fleet of vehicles is available to visit suppliers offering products at different prices and with different quantity availabilities. The DC-MVTPP consists in selecting a subset of suppliers so to satisfy products demand at the minimum traveling and purchasing costs, while ensuring that the distance traveled by each vehicle does not exceed a predefined upper bound. The problem generalizes the classical Traveling Purchaser Problem (TPP) and adds new realistic features to the decision problem. In this paper we present different mathematical programming formulations for the problem. A branch-and-price algorithm is also proposed to solve a set partitioning formulation where columns represent feasible routes for the vehicles. At each node of the branch-and-bound tree, the linear relaxation of the set partitioning formulation, augmented by the branching constraints, is solved through column generation. The pricing problem is solved using dynamic programming. A set of instances has been derived from benchmark instances for the asymmetric TPP. Instances with up to 100 suppliers and 200 products have been solved to optimality.  相似文献   

18.
19.
Although several analytical models have been proposed in the literature for binary n-cubes with deterministic routing, most of them have not included the effects of virtual channel multiplexing on network performance. The only mathematical model for deterministic wormhole routing in hypercubes with virtual channels was proposed in [Y. Boura, Design and Analysis of Routing Schemes and Routers for Wormhole-routed Mesh Architectures, Ph.D. Thesis, Department of Computer Science and Engineering, Pennsylvania State University, 1995] which uses complex combinatorial analysis with a computation time of O(N=2n) for an n-dimensional hypercube. This paper proposes a new and simple analytical model to compute message latency in binary n-cubes with virtual channels. It is very simple and easy to understand which uses an average case analysis and requires a computation time of O(n) for an n-dimensional hypercube. Results from simulation experiments confirm that the proposed model exhibits a good degree of accuracy for various network sizes and under different operating conditions.  相似文献   

20.
We study a quasilinear elliptic problem
with nonhomogeneous principal part φ. Under the hypothesis f(x,t)= o(φ(t)t) at t= 0 and ∞, the existence of multiple positive solutions is proved by using the variational arguments in the Orlicz–Sobolev spaces. Mathematics Subject Classification (2000) 35J20; 35J25; 35J70; 47J10; 47J30  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号