首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
On 2-factors with cycles containing specified edges in a bipartite graph   总被引:1,自引:0,他引:1  
Let k≥1 be an integer and G=(V1,V2;E) a bipartite graph with |V1|=|V2|=n such that n≥2k+2. In this paper it has been proved that if for each pair of nonadjacent vertices xV1 and yV2, , then for any k independent edges e1,…,ek of G, G has a 2-factor with k+1 cycles C1,…,Ck+1 such that eiE(Ci) and |V(Ci)|=4 for each i∈{1,…,k}. We shall also show that the conditions in this paper are sharp.  相似文献   

2.
The theory of vertex-disjoint cycles and 2-factors of graphs is the extension and generation of the well-known Hamiltonian cycles theory and it has important applications in network communication. In this paper we first prove the following result. Let G=(V 1,V 2;E) be a bipartite graph with |V 1|=|V 2|=n such that n≥2k+1, where k≥1 is an integer. If d(x)+d(y)≥?(4n+2k?1)/3? for each pair of nonadjacent vertices x and y of G with xV 1 and yV 2, then, for any k independent edges e 1,…,e k of G, G contains k vertex-disjoint quadrilaterals C 1,…,C k such that e i E(C i ) for each i∈{1,…,k}. We further show that the degree condition above is sharp. If |V 1|=|V 2|=2k, we give degree conditions that G has a 2-factor with k vertex-disjoint quadrilaterals C 1,…,C k containing specified edges of G.  相似文献   

3.
For positive integers k,d1,d2, a k-L(d1,d2)-labeling of a graph G is a function f:V(G)→{0,1,2,…,k} such that |f(u)-f(v)|?di whenever the distance between u and v is i in G, for i=1,2. The L(d1,d2)-number of G, λd1,d2(G), is the smallest k such that there exists a k-L(d1,d2)-labeling of G. This class of labelings is motivated by the code (or frequency) assignment problem in computer network. This article surveys the results on this labeling problem.  相似文献   

4.
J. Gómez 《Discrete Mathematics》2008,308(15):3361-3372
Let G=(V,E) be a finite non-empty graph, where V and E are the sets of vertices and edges of G, respectively, and |V|=n and |E|=e. A vertex-magic total labeling (VMTL) is a bijection λ from VE to the consecutive integers 1,2,…,n+e with the property that for every vV, , for some constant h. Such a labeling is super if λ(V)={1,2,…,n}. In this paper, two new methods to obtain super VMTLs of graphs are put forward. The first, from a graph G with some characteristics, provides a super VMTL to the graph kG graph composed by the disjoint unions of k copies of G, for a large number of values of k. The second, from a graph G0 which admits a super VMTL; for instance, the graph kG, provides many super VMTLs for the graphs obtained from G0 by means of the addition to it of various sets of edges.  相似文献   

5.
Disjoint triangles and quadrilaterals in a graph   总被引:1,自引:0,他引:1  
Jin Yan 《Discrete Mathematics》2008,308(17):3930-3937
Let G be a simple graph of order n and s and k be two positive integers. Brandt et al. obtained the following result: If s?k, n?3s+4(k-s) and σ2(G)?n+s, then G contains k disjoint cycles C1,…,Ck satisfying |Ci|=3 for 1?i?s and |Ci|?4 for s<i?k. In the above result, the length of Ci is not specified for s<i?k. We get a result specifying the length of Ci for each s<i?k if n?3s+4(k-s)+3.  相似文献   

6.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

7.
For given graphs G and H, the Ramsey number R(G,H) is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. In this paper we investigate the Ramsey number of a disjoint union of graphs . For any natural integer k, we contain a general upper bound, R(kG,H)?R(G,H)+(k-1)|V(G)|. We also show that if m=2n-4, 2n-8 or 2n-6, then R(kSn,Wm)=R(Sn,Wm)+(k-1)n. Furthermore, if |Gi|>(|Gi|-|Gi+1|)(χ(H)-1) and R(Gi,H)=(χ(H)-1)(|Gi|-1)+1, for each i, then .  相似文献   

8.
A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n1,…,nk) of positive integers with n1+?+nk=n, there exists a partition (V1,…,Vk) of the vertex set of G such that Vi induces a connected subgraph of order ni, for all i=1,…,k. A sun with r rays is a unicyclic graph obtained by adding r hanging edges to r distinct vertices of a cycle. We characterize all arbitrarily vertex decomposable suns with at most three rays. We also provide a list of all on-line arbitrarily vertex decomposable suns with any number of rays.  相似文献   

9.
A balanced vertex-coloring of a graph G is a function c from V(G) to {−1,0,1} such that ∑{c(v):vV(G)}=0. A subset U of V(G) is called a balanced set if U induces a connected subgraph and ∑{c(v):vU}=0. A decomposition V(G)=V1∪?∪Vr is called a balanced decomposition if Vi is a balanced set for 1≤ir.In this paper, the balanced decomposition number f(G) of G is introduced; f(G) is the smallest integer s such that for any balanced vertex-coloring c of G, there exists a balanced decomposition V(G)=V1∪?∪Vr with |Vi|≤s for 1≤ir. Balanced decomposition numbers of some basic families of graphs such as complete graphs, trees, complete bipartite graphs, cycles, 2-connected graphs are studied.  相似文献   

10.
The neighbourhood-width of a graph G=(V,E) is introduced in [F. Gurski, Linear layouts measuring neighbourhoods in graphs, Discrete Math. 306 (15) (2006) 1637-1650.] as the smallest integer k such that there is a linear layout ?:V→{1,…,|V|} such that for every 1?i<|V| the vertices u with ?(u)?i can be divided into at most k subsets each members having the same neighbours with respect to the vertices v with ?(v)>i.In this paper we show first bounds for the neighbourhood-width of general graphs, caterpillars, trees and grid graphs and give applications of the layout parameter neighbourhood-width in graph drawing and VLSI design.  相似文献   

11.
Let k≥1 be an integer and G=(V 1,V 2;E) a bipartite graph with |V 1|=|V 2|=n such that n≥2k+2. Our result is as follows: If $d(x)+d(y)\geq \lceil\frac{4n+k}{3}\rceil$ for any nonadjacent vertices xV 1 and yV 2, then for any k distinct vertices z 1,…,z k , G contains a 2-factor with k+1 cycles C 1,…,C k+1 such that z i V(C i ) and l(C i )=4 for each i∈{1,…,k}.  相似文献   

12.
In this paper we introduce the graph layout parameter neighbourhood-width as a variation of the well-known cut-width. The cut-width of a graph G=(V,E) is the smallest integer k, such that there is a linear layout ?:V→{1,…,|V|}, such that for every 1?i<|V| there are at most k edges {u,v} with ?(u)?i and ?(v)>i. The neighbourhood-width of a graph is the smallest integer k, such that there is a linear layout ?, such that for every 1?i<|V| the vertices u with ?(u)?i can be divided into at most k subsets each members having the same neighbourhood with respect to the vertices v with ?(v)>i.We show that the neighbourhood-width of a graph differs from its linear clique-width or linear NLC-width at most by one. This relation is used to show that the minimization problem for neighbourhood-width is NP-complete.Furthermore, we prove that simple modifications of neighbourhood-width imply equivalent layout characterizations for linear clique-width and linear NLC-width.We also show that every graph of path-width k or cut-width k has neighbourhood-width at most k+2 and we give several conditions such that graphs of bounded neighbourhood-width have bounded path-width or bounded cut-width.  相似文献   

13.
We completely solve certain case of a “two delegation negotiation” version of the Oberwolfach problem, which can be stated as follows. Let H(k,3) be a bipartite graph with bipartition X={x1,x2,…,xk},Y={y1,y2,…,yk} and edges x1y1,x1y2,xkyk−1,xkyk, and xiyi−1,xiyi,xiyi+1 for i=2,3,…,k−1. We completely characterize all complete bipartite graphs Kn,n that can be factorized into factors isomorphic to G=mH(k,3), where k is odd and mH(k,3) is the graph consisting of m disjoint copies of H(k,3).  相似文献   

14.
Motivated by applications in software programming, we consider the problem of covering a graph by a feasible labeling. Given an undirected graph G=(V,E), two positive integers k and t, and an alphabet Σ, a feasible labeling is defined as an assignment of a set LvΣ to each vertex vV, such that (i) |Lv|≤k for all vV and (ii) each label αΣ is used no more than t times. An edge e={i,j} is said to be covered by a feasible labeling if LiLj≠0?. G is said to be covered if there exists a feasible labeling that covers each edge eE.In general, we show that the problem of deciding whether or not a tree can be covered is strongly NP-complete. For k=2, t=3, we characterize the trees that can be covered and provide a linear time algorithm for solving the decision problem. For fixed t, we present a strongly polynomial algorithm that solves the decision problem; if a tree can be covered, then a corresponding feasible labeling can be obtained in time polynomial in k and the size of the tree. For general graphs, we give a strongly polynomial algorithm to resolve the covering problem for k=2, t=3.  相似文献   

15.
Given a family of interval graphs F={G1=(V,E1),…,Gk=(V,Ek)} on the same vertices V, a set SV is a maximal common connected set of F if the subgraphs of Gi,1?i?k, induced by S are connected in all Gi and S is maximal for the inclusion order. The maximal general common connected set for interval graphs problem (gen-CCPI) consists in efficiently computing the partition of V in maximal common connected sets of F. This problem has many practical applications, notably in computational biology. Let n=|V| and . For k?2, an algorithm in O((kn+m)logn) time is presented in Habib et al. [Maximal common connected sets of interval graphs, in: Combinatorial Pattern Matching (CPM), Lecture Notes in Computer Science, vol. 3109, Springer, Berlin, 2004, pp. 359-372]. In this paper, we improve this bound to O(knlogn+m). Moreover, if the interval graphs are given as k sets of n intervals, which is often the case in bioinformatics, we present a simple time algorithm.  相似文献   

16.
For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance between any two distinct vertices from A is more than k. The packing chromatic number of G is the smallest integer m such that the vertex set of G can be partitioned as V1,V2,…,Vm where Vi is an i-packing for each i. It is proved that the planar triangular lattice T and the three-dimensional integer lattice Z3 do not have finite packing chromatic numbers.  相似文献   

17.
In this paper, we proved the following result: Let G be a (k+2)-connected, non-(k−3)-apex graph where k≥2. If G contains three k-cliques, say L1, L2, L3, such that |LiLj|≤k−2(1≤i<j≤3), then G contains a Kk+2 as a minor. Note that a graph G is t-apex if GX is planar for some subset XV(G) of order at most t.This theorem generalizes some earlier results by Robertson, Seymour and Thomas [N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K6-free graphs, Combinatorica 13 (1993) 279-361.], Kawarabayashi and Toft [K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K7 or K4,4 as a minor, Combinatorica 25 (2005) 327-353] and Kawarabayashi, Luo, Niu and Zhang [K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang, On structure of k-connected graphs without Kk-minor, Europ. J. Combinatorics 26 (2005) 293-308].  相似文献   

18.
Let G be a graph. The connectivity of G, κ(G), is the maximum integer k such that there exists a k-container between any two different vertices. A k-container of G between u and v, Ck(u,v), is a set of k-internally-disjoint paths between u and v. A spanning container is a container that spans V(G). A graph G is k-connected if there exists a spanning k-container between any two different vertices. The spanning connectivity of G, κ(G), is the maximum integer k such that G is w-connected for 1≤wk if G is 1-connected.Let x be a vertex in G and let U={y1,y2,…,yk} be a subset of V(G) where x is not in U. A spanningk−(x,U)-fan, Fk(x,U), is a set of internally-disjoint paths {P1,P2,…,Pk} such that Pi is a path connecting x to yi for 1≤ik and . A graph G is k-fan-connected (or -connected) if there exists a spanning Fk(x,U)-fan for every choice of x and U with |U|=k and xU. The spanning fan-connectivity of a graph G, , is defined as the largest integer k such that G is -connected for 1≤wk if G is -connected.In this paper, some relationship between κ(G), κ(G), and are discussed. Moreover, some sufficient conditions for a graph to be -connected are presented. Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss some sufficient conditions for a graph to be k-pipeline-connected.  相似文献   

19.
P. Horak 《Discrete Mathematics》2008,308(19):4414-4418
The purpose of this paper is to initiate study of the following problem: Let G be a graph, and k?1. Determine the minimum number s of trees T1,…,Ts, Δ(Ti)?k,i=1,…,s, covering all vertices of G. We conjecture: Let G be a connected graph, and k?2. Then the vertices of G can be covered by edge-disjoint trees of maximum degree ?k. As a support for the conjecture we prove the statement for some values of δ and k.  相似文献   

20.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号