首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

2.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

3.
The cube G3 of a connected graph G is that graph having the same vertex set as G and in which two distinct vertices are adjacent if and only if their distance in G is at most three. A Hamiltonian-connected graph has the property that every two distinct vertices are joined by a Hamiltonian path. A graph G is 1-Hamiltonian-connected if, for every vertex w of G, the graphs G and G?w are Hamiltonian-connected. A characterization of graphs whose cubes are 1-Hamiltonian-connected is presented.  相似文献   

4.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

5.
Jun-Jie Pan 《Discrete Mathematics》2006,306(17):2091-2096
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.  相似文献   

6.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

7.
The Hamiltonian path graph H(G) of a graph G is that graph having the same vertex set as G and in which two vertices u and v are adjacent if and only if G contains a Hamiltonian u-v path. A characterization of Hamiltonian graphs isomorphic to their Hamiltonian path graphs is presented.  相似文献   

8.
A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths inG such that every path in ψ has at least two vertices, every vertex ofG is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. Let Ω (ψ) denote the intersection graph of ψ. A graph G is said to be graphoidal if there exists a graphH and a graphoidal cover ψof H such that G is isomorphic to Ω(ψ). In this paper we study the properties of graphoidal graphs and obtain a forbidden subgraph characterisation of bipartite graphoidal graphs.  相似文献   

9.
Let G be a graph with vertex set V(G). A set C of vertices of G is g-convex if for every pair \({u, v \in C}\) the vertices on every uv geodesic (i.e. shortest uv path) belong to C. If the only g-convex sets of G are the empty set, V(G), all singletons and all edges, then G is called a g-minimal graph. It is shown that a graph is g-minimal if and only if it is triangle-free and if it has the property that the convex hull of every pair of non-adjacent vertices is V(G). Several properties of g-minimal graphs are established and it is shown that every triangle-free graph is an induced subgraph of a g-minimal graph. Recursive constructions of g-minimal graphs are described and bounds for the number of edges in these graphs are given. It is shown that the roots of the generating polynomials of the number of g-convex sets of each size of a g-minimal graphs are bounded, in contrast to their behaviour over all graphs. A set C of vertices of a graph is m-convex if for every pair \({u, v \in C}\) , the vertices of every induced uv path belong to C. A graph is m-minimal if it has no m-convex sets other than the empty set, the singletons, the edges and the entire vertex set. Sharp bounds on the number of edges in these graphs are given and graphs that are m-minimal are shown to be precisely the 2-connected, triangle-free graphs for which no pair of adjacent vertices forms a vertex cut-set.  相似文献   

10.
《Discrete Mathematics》2023,346(1):113143
The independence equivalence class of a graph G is the set of graphs that have the same independence polynomial as G. A graph whose independence equivalence class contains only itself, up to isomorphism, is independence unique. Beaton, Brown and Cameron [2] showed that paths with an odd number of vertices are independence unique and raised the problem of finding the independence equivalence class of paths with an even number of vertices. The problem is completely solved in this paper.  相似文献   

11.
A graph is called equistable when there is a non-negative weight function on its vertices such that a set S of vertices has total weight 1 if and only if S is maximal stable. We show that a necessary condition for a graph to be equistable is sufficient when the graph in question is distance-hereditary. This is used to design a polynomial-time recognition algorithm for equistable distance-hereditary graphs.  相似文献   

12.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

13.
Let G=(V,E) be a (directed) graph with vertex set V and edge (arc) set E. Given a set P of source-sink pairs of vertices of G, an important problem that arises in the computation of network reliability is the enumeration of minimal subsets of edges (arcs) that connect/disconnect all/at least one of the given source-sink pairs of P. For undirected graphs, we show that the enumeration problems for conjunctions of paths and disjunctions of cuts can be solved in incremental polynomial time. Furthermore, under the assumption that P consists of all pairs within a given vertex set, we also give incremental polynomial time algorithm for enumerating all minimal path disjunctions and cut conjunctions. For directed graphs, the enumeration problem for cut disjunction is known to be NP-complete. We extend this result to path conjunctions and path disjunctions, leaving open the complexity of the enumeration of cut conjunctions. Finally, we give a polynomial delay algorithm for enumerating all minimal sets of arcs connecting two given nodes s1 and s2 to, respectively, a given vertex t1, and each vertex of a given subset of vertices T2.  相似文献   

14.
A graph G is said to be a set graph if it admits an acyclic orientation which is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set.In this paper, we initiate the study of set graphs. On the one hand, we identify several necessary conditions that every set graph must satisfy. On the other hand, we show that set graphs form a rich class of graphs containing all connected claw-free graphs and all graphs with a Hamiltonian path. In the case of claw-free graphs, we provide a polynomial-time algorithm for finding an extensional acyclic orientation. Inspired by manipulations of hereditarily finite sets, we give simple proofs of two well-known results about claw-free graphs. We give a complete characterization of unicyclic set graphs, and point out two NP-complete problems closely related to the problem of recognizing set graphs. Finally, we argue that these three problems are solvable in linear time on graphs of bounded treewidth.  相似文献   

15.
A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergrid graphs were first introduced by us and include grid graphs and triangular grid graphs as subgraphs. The Hamiltonian path problem for grid graphs and triangular grid graphs was known to be NP-complete. Recently, we have proved that the Hamiltonian path problem for supergrid graphs is also NP-complete. The Hamiltonian paths on supergrid graphs can be applied to compute the stitching traces of computer sewing machines. Rectangular supergrid graphs form a popular subclass of supergrid graphs, and they have strong structure. In this paper, we provide a constructive proof to show that rectangular supergrid graphs are Hamiltonian connected except one trivial forbidden condition. Based on the constructive proof, we present a linear-time algorithm to construct a longest path between any two given vertices in a rectangular supergrid graph.  相似文献   

16.
A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we introduce the concept of maximum-clique perfect and some variations of the maximum-clique transversal set problem such as the {k}-maximum-clique, k-fold maximum-clique, signed maximum-clique, and minus maximum-clique transversal problems. We show that balanced graphs, strongly chordal graphs, and distance-hereditary graphs are maximum-clique perfect. Besides, we present a unified approach to these four problems on strongly chordal graphs and give complexity results for the following classes of graphs: split graphs, balanced graphs, comparability graphs, distance-hereditary graphs, dually chordal graphs, doubly chordal graphs, chordal graphs, planar graphs, and triangle-free graphs.  相似文献   

17.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents anO(n 2) time sequential algorithm and anO(n 2/p+logn) time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, wherep andn represent respectively the number of processors and the number of vertices of the circular-arc graph.  相似文献   

18.
The geodesic and induced path transit functions are the two well-studied interval functions in graphs. Two important transit functions related to the geodesic and induced path functions are the triangle path transit functions which consist of all vertices on all u,v-shortest (induced) paths or all vertices adjacent to two adjacent vertices on all u,v-shortest (induced) paths, for any two vertices u and v in a connected graph G. In this paper we study the two triangle path transit functions, namely the IΔ and JΔ on G. We discuss the betweenness axioms, for both triangle path transit functions. Also we present a characterization of pseudo-modular graphs using the transit function IΔ by forbidden subgraphs.  相似文献   

19.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

20.
Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G=(V,E) with a given independent set SV (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain partitioned probe graphs. The first one describes chain partitioned probe graphs by six forbidden subgraphs. The second one characterizes these graphs via a certain “enhanced graph”: G is a chain partitioned probe graph if and only if the enhanced graph G * is a chain graph. This is analogous to a result on interval (respectively, chordal, threshold, trivially perfect) partitioned probe graphs, and gives an O(m 2)-time recognition algorithm for chain partitioned probe graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号