首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give a formula expressing Bernoulli numbers of the second kind as 2-adically convergent sums of traces of algebraic integers. We use this formula to prove and explain the formulas and conjectures of Adelberg concerning the initial 2-adic digits of these numbers. We also give analogous results for the Nörlund numbers.  相似文献   

2.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

3.
In this paper, we first consider a generalization of Kim’s p-adic q-integral on Zp including parameters α and β. By using this integral, we introduce the q-Daehee polynomials and numbers with weight α,β. Then, we obtain some interesting relationships and identities for these numbers and polynomials. We also derive some correlations among q-Daehee polynomials with weight α,β, q-Bernoulli polynomials with weight α,β and Stirling numbers of second kind.  相似文献   

4.
We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli numbers and polynomials. We use this identity to describe some combinatorial relations between these polynomials and generalized factorial sums. As further applications we derive several identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums, Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second kind.  相似文献   

5.
In this paper, we consider a kind of sums involving Cauchy numbers, which have not been studied in the literature. By means of the method of coefficients, we give some properties of the sums. We further derive some recurrence relations and establish a series of identities involving the sums, Stirling numbers, generalized Bernoulli numbers, generalized Euler numbers, Lah numbers, and harmonic numbers. In particular, we generalize some relations between two kinds of Cauchy numbers and some identities for Cauchy numbers and Stirling numbers.  相似文献   

6.
We define the generalized potential polynomials associated to an independent variable, and prove an explicit formula involving the generalized potential polynomials and the exponential Bell polynomials. We use this formula to describe closed type formulas for the higher order Bernoulli, Eulerian, Euler, Genocchi, Apostol-Bernoulli, Apostol-Euler polynomials and the polynomials involving the Stirling numbers of the second kind. As further applications, we derive several known identities involving the Bernoulli numbers and polynomials and Euler polynomials, and new relations for the higher order tangent numbers, the higher order Bernoulli numbers of the second kind, the numbers , the higher order Bernoulli numbers and polynomials and the higher order Euler polynomials and their coefficients.  相似文献   

7.
We study many properties of Cauchy numbers in terms of generating functions and Riordan arrays and find several new identities relating these numbers with Stirling, Bernoulli and harmonic numbers. We also reconsider the Laplace summation formula showing some applications involving the Cauchy numbers.  相似文献   

8.
The aim of this paper is to study on the Genocchi polynomials of higher order on P, the algebra of polynomials in the single variable x over the field C of characteristic zero and P, the vector spaces of all linear functional on P. By using the action of a linear functional L on a polynomial p(x) Sheffer sequences and Appell sequences, we obtain some fundamental properties of the Genocchi polynomials. Furthermore, we give relations between, the first and second kind Stirling numbers, Euler polynomials of higher order and Genocchi polynomials of higher order.  相似文献   

9.
In the papers (Benoumhani 1996;1997), Benoumhani defined two polynomials Fm,n,1(x) and Fm,n,2(x). Then, he defined Am(n,k) and Bm(n,k) to be the polynomials satisfying Fm,n,1(x)=k=0nAm(n,k)xn?k(x+1)k and Fm,n,1(x)=k=0nBm(n,k)xn?k(x+1)k. In this paper, we give a combinatorial interpretation of the coefficients of Am+1(n,k) and prove a symmetry of the coefficients, i.e., [ms]Am+1(n,k)=[mn?s]Am+1(n,n?k). We give a combinatorial interpretation of Bm+1(n,k) and prove that Bm+1(n,n?1) is a polynomial in m with non-negative integer coefficients. We also prove that if n6 then all coefficients of Bm+1(n,n?2) except the coefficient of mn?1 are non-negative integers. For all n, the coefficient of mn?1 in Bm+1(n,n?2) is ?(n?1), and when n5 some other coefficients of Bm+1(n,n?2) are also negative.  相似文献   

10.
In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.  相似文献   

11.
利用初等方法研究Chebyshev多项式的性质,建立了广义第二类Chebyshev多项式的一个显明公式,并得到了一些包含第一类Chebyshev多项式,第一类Stirling数和Lucas数的恒等式.  相似文献   

12.
13.
14.
15.
We present an analytic extension of the unsigned Stirling numbers of the first kind that is in a certain sense unique in its coincidence with the Stirling polynomials. We examine and compare our extension to previous extensions of (signed) Stirling numbers of the first kind given by Butzer et al. (2007, J. Difference Equ. Appl., 13) and of the unsigned numbers given by Adamchik (1997, J. Comput. Appl. Math., 79). We also see a connection to the Riemann zeta function.  相似文献   

16.
The aim of this article is to define some new families of the special numbers. These numbers provide some further motivation for computation of combinatorial sums involving binomial coefficients and the Euler kind numbers of negative order. We can show that these numbers are related to the well‐known numbers and polynomials such as the Stirling numbers of the second kind and the central factorial numbers, the array polynomials, the rook numbers and polynomials, the Bernstein basis functions and others. In order to derive our new identities and relations for these numbers, we use a technique including the generating functions and functional equations. Finally, we give not only a computational algorithm for these numbers but also some numerical values of these numbers and the Euler numbers of negative order with tables. We also give some combinatorial interpretations of our new numbers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In his recent investigations involving differential operators for some generalizations of the classical Laguerre polynomials, H. Bavinck [J. Phys. A Math. Gen. 29 (1996) L277-L279] encountered and proved a certain summation identity for the classical Laguerre polynomials. The main object of this sequel to Bavinck's work is to prove a generalization of this summation identity for the Srivastava-Singhal polynomials. The demonstration, which is presented here in the general case, differs markedly from the earlier proof given for the known special case. It is also indicated how the general summation identity can be applied to derive the corresponding result for one class of the Konhauser biorthogonal polynomials.  相似文献   

18.
We present a set of generators of the full annihilator ideal for the Witt ring of an arbitrary field of characteristic unequal to two satisfying a non‐vanishing condition on the powers of the fundamental ideal in the torsion part of the Witt ring. This settles a conjecture of Ongenae and Van Geel. This result could only be proved by first obtaining a new lower bound on the 2‐adic valuation of Stirling numbers of the second kind. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In some recent investigations involving differential operators for generalized Laguerre polynomials, Herman Bavinck (1996) encountered and proved a certain summation formula for the classical Laguerre polynomials. The main object of this sequel to Bavinck's work is to prove a generalization of this summation formula for a class of hypergeometric polynomials. The demonstration, which is presented here in the general case, differs markedly from the earlier proof given for the known special case. The general summation formula is also applied to derive the corresponding result for the classical Jacobi polynomials.

  相似文献   


20.
This paper describes an approach to generalized Bernoulli polynomials in higher dimensions by using Clifford algebras. Due to the fact that the obtained Bernoulli polynomials are special hypercomplex holomorphic (monogenic) functions in the sense of Clifford Analysis, they have properties very similar to those of the classical polynomials. Hypercomplex Pascal and Bernoulli matrices are defined and studied, thereby generalizing results recently obtained by Zhang and Wang (Z. Zhang, J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (11) (2006) 1622-1632).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号