首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral molecular self-assemblies were usually achieved using short-range intermolecular interactions, such as hydrogen-, metal–organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short-range chirality recognition. Long-range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long-range chirality recognition is presented between neighboring 3-bromo-naphthalen-2-ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction-induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.  相似文献   

2.
Chiral molecular self‐assemblies were usually achieved using short‐range intermolecular interactions, such as hydrogen‐, metal–organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short‐range chirality recognition. Long‐range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long‐range chirality recognition is presented between neighboring 3‐bromo‐naphthalen‐2‐ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction‐induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.  相似文献   

3.
Macromolecular interactions were demonstrated to yield large chiroptical effects in second harmonic generation measurements of ultrathin surface films. Second harmonic generation (SHG) has recently shown to be several orders of magnitude more sensitive to chirality in oriented systems than common linear methods, including absorbance circular dichroism (CD) and optical rotary dispersion (ORD). Numerous mechanisms have been developed to explain this anomalous sensitivity, with a general emphasis on understanding the molecular origins of the chromophore chirality. In this work, orientational effects alone are shown to be the dominant factor for generating large SHG chiral dichroic ratios in many surface systems. Three distinct uniaxial surface films of SHG-active achiral chromophores oriented at chiral templated surfaces were observed to yield chiral dichroic ratios as great as 40% in magnitude.  相似文献   

4.
Temperature-programmed desorption (TPD) experiments have been conducted to investigate enantiospecific desorption from chiral single-crystal surfaces. The (643) and (six four three) planes of face-centered cubic metals such as Cu have kinked and stepped structures which are nonsuperimposable mirror images of one another and therefore are chiral. These chiral surfaces are denoted Cu(643)(R) and Cu(643)(S). We have observed that the desorption energies of (R)-3-methylcyclohexanone and (R)- and (S)-propylene oxides from the Cu(643)(R) and Cu(643)(S) surfaces depend on the relative handedness of the adsorbate/substrate combination. Since the (643) surface is comprised of terraces with local (111) orientation which are separated by kinked monatomic steps, it is instructive to perform TPD experiments with these chiral compounds on the achiral Cu(111) surface. These experiments have given some insight into the adsorption sites for the chiral molecules on the Cu(643) surfaces. There are several high-temperature features in the TPD spectra of the chiral compounds that only appear in the spectra from the (643) surfaces and thus are attributed to molecules adsorbed at or near the kinked steps. In addition there are lower temperature desorption features observed on the Cu(643) surfaces which occur in the same temperature range as desorption features observed on the Cu(111) surface. These features observed on the (643) surfaces are attributed to desorption from the flat (111) terraces.  相似文献   

5.
Attard GA  Harris C  Herrero E  Feliu J 《Faraday discussions》2002,(121):253-66; discussion 331-64
The electro-oxidation of glucose in sulfuric acid using well-defined chiral platinum single crystal electrodes has been demonstrated previously to be an enantioselective reaction with the degree of enantioselectivity being dependent on the surface density of kink sites. The chirality of the surface originates from the microstructure of the kink site whereby the sequence of the three fundamental adsorption sites [111], [100] and [110] constituting the kink may be viewed from the electrolyte phase either in a clockwise (R-enantiomer) or anti-clockwise (S-enantiomer) fashion. In the present study, this work is extended to examine the role of both kink structure and specifically adsorbed anions on the mechanism of chiral discrimination. Kinked surfaces based on [111] terraces (Pt[976],Pt[643] and Pt[531]),[100] terraces (Pt[721]) and [110] terraces (Pt[11,7,1] and Pt[841]) have been investigated and both the magnitude and potential dependence of the enantioselective electro-oxidation of glucose characterised. Additionally, the changes engendered by interchanging the character of the two steps whose confluence form the kink whilst maintaining the symmetry of the terrace has also been examined via a comparison of Pt[643] and Pt[431]. Low energy electron diffraction (LEED) was used to confirm that all surfaces when clean and thermally annealed were in their (1 x 1) state. Cyclic voltammetry (CV) confirmed this finding for flame-annealed electrodes after cooling in hydrogen. Three general points emerge from the electro-oxidation studies: (i) The highest degree of enantioselectivity is exhibited by kink sites adjacent to [111] and [110] terraces in sulfuric acid. (ii) The adsorption of specifically adsorbed anions like bisulfate/sulfate influences strongly the chiral discriminatory behaviour of all surfaces. (iii) No electro-oxidation takes place at [110] sites, as evidenced by complete overlap of the [110] step hydrogen underpotential deposition (UPD) charge in glucose and glucose-free solutions. Nonetheless it is deduced that [110] sites must play some part in the initial orienting of the glucose molecule prior to reaction. Ideas based on these findings are developed in order to rationalise in particular the influence of anion adsorption on the initial enantioselective interaction of the glucose molecule with the chiral surface.  相似文献   

6.
Spontaneous symmetry-breaking of a racemic mixture of supramolecular triginal prisms into chiral domains on a Au(111) surface is observed by scanning tunneling microscopy (STM). High-resolution STM analysis enables the structural aspects of each enantiomeric domain to be elucidated. The ability to resolve chirality on achiral surfaces has potential applications in heterogeneous stereoselective synthesis and catalysis.  相似文献   

7.
In situ optical second harmonic generation (SHG) technique was employed to investigate the shape and density of Cu nanoclusters, which were electrochemically formed on p-GaAs(001) electrode surfaces. Since GaAs is not a centrosymmetric medium, a significant portion of SHG signal arises from the bulk dipole susceptibility, but it was possible to separate a surface-induced signal from a bulk-induced signal by choosing an appropriate experimental geometry and appropriate data processing. The rotational anisotropy (RA) pattern of the SHG signal from a p-GaAs(001) electrode changed in both shape and magnitude during potential cycling in an electrolyte solution containing Cu2+. The surface plasmon-induced SHG signal from Cu nanoclusters deposited on GaAs was attributed to the modulation source for the RA-SHG pattern. More detailed study was carried out with both in situ SHG and ex situ AFM measurements for Cu nanoclusters deposited by potential step. The results showed that the SHG signal at the present optical geometry was sensitive to the number of oblate or flattened Cu nanoclusters with lateral diameter larger than 30 nm and that the SHG enhancement occurred because of resonant coupling between the surface plasmon induced in the flattened Cu nanoclusters and the near-infrared fundamental light.  相似文献   

8.
The enantioselective surface chemistry of chiral R-2-bromobutane was studied on the naturally chiral Cu(643)R&S and Cu(531)R&S surfaces by comparing relative product yields during temperature-programmed reaction spectroscopy. Molecularly adsorbed R-2-bromobutane can desorb molecularly or debrominate to form R-2-butyl groups on the surfaces. The R-2-butyl groups react further by beta-hydride elimination to form 1- or 2-butene or by hydrogenation to form butane. Temperature-programmed reaction spectroscopy was used to quantify the relative yields of the various reaction products. At low coverages of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S, the surface chemistry is not enantioselective. At monolayer coverage, however, the product yields indicate that the R-2-bromobutane decomposition reaction rates are sensitive to the handedness of the two chiral surfaces. The impact of surface structure on enantioselectivity was examined by studying the chemistry of R-2-bromobutane on both Cu(643)R&S and Cu(531)R&S. The selectivity of R-2-bromobutane desorption versus debromination is enantiospecific and differs significantly from Cu(643) to Cu(531). The selectivity of the R-2-butyl reaction by beta-hydride elimination versus hydrogenation is only weakly enantiospecific and is similar on both the Cu(643) and Cu(531) surfaces. These results represent the first quantitative observations of enantioselectivity in reactions with well-known mechanisms probed using a simple adsorbate on naturally chiral metal surfaces.  相似文献   

9.
The adsorption rates onto a range of platinum single-crystal surfaces of key species involved in the proline-directed heterogeneous enantioselective hydrogenation of isophorone were investigated by electrochemical means. Specifically, the uptakes of the prochiral reactant (isophorone), the chiral hydrogenation product (3,3,5-trimethylcyclohexanone), and the chiral directing agent ((R)- and (S)-proline) were examined. The effects of R,S chiral kink sites on the adsorption of (R,S)-proline were also studied. The reactant adsorbs approximately 105 times faster than the chiral modifier so that under conditions of competitive adsorption the latter is entirely excluded from the metal surface. Supplementary displacement and reaction rate measurements carried out with practical Pd/carbon catalysts show that under certain reaction conditions isophorone quickly displaces preadsorbed proline from the metal surface. Thus both kinetics and thermodynamics ensure that the chiral modifier can play no role in any surface-mediated process that leads to enantiodifferentiation. These results are fully consistent with the recent proposal1 that the crucial step leading to enantiodifferentiation occurs in the solution phase and not at the metal surface. In addition, it is found that there is no preferred diastereomeric interaction between (R,S)-proline and R,S step kink sites on Pt{643} and Pt{976}, implying that such sites do not play a role in determining the catalytic behavior of supported metal nanoparticles.  相似文献   

10.
Chirality can produce novel nonlinear optical effects that may form the basis for new imaging contrast agents. In this paper, we developed a new chiral chromophore 2, which is the dimer of a known voltage sensitive dye, monomer 1, with the chirality originating from the twisted orientation between two subunits. Racemic dimer and monomer 1 were used as the references to study the effect of chirality in SHG microscopy of live cells. All these dyes selectively stain the outer leaflets of cell membranes, producing strong resonance-enhanced SHG images. At the symmetric junction between two adherent cells, monomer or racemic dimer SHG is forbidden due to centrosymmetry, and indeed little SHG was observed (10 +/- 1% relative to nonjunction). When stained with the chiral dimer, the junction is no longer centrosymmetric and much stronger SHG was observed (39 +/- 4% relative to nonjunction). Plane polarized light produces highly polarized images of spherical cells stained with racemic dye, but for the chiral dye, the polarized pattern is largely eliminated by the chiral SHG emanating from the subresolution membrane convolutions.  相似文献   

11.
The hierarchical transfer of chirality in nature, from the nano‐, to meso‐, to macroscopic length scales, is very complex, and as of yet, not well understood. The advent of scanning probes has allowed chirality to be monitored at the single molecule or monolayer level and has opened up the possibility to track enantiospecific interactions and chiral self‐assembly with molecular‐scale detail. This paper describes the self‐assembly of a simple, model molecule (naphtho[2,3‐a]pyrene) that is achiral in the gas phase, but becomes chiral when adsorbed on a surface. This polyaromatic hydrocarbon forms a stable and reversibly ordered system on Cu(111) in which the transmission of chirality from single surface‐bound molecules to complex 2D chiral architectures can be monitored as a function of molecular packing density and surface temperature. In addition to the point chirality of the surface‐bound molecule, the unit cell of the molecular domains was also found to be chiral due to the incommensurate alignment of the molecular rows with respect to the underlying metal lattice. These molecular domains always aggregated in groups of three, all of the same chirality, but with different rotational orientations, forming homochiral “tri‐lobe” ensembles. At a larger length scale, these tri‐lobe ensembles associated with nearest‐neighbor tri‐lobe units of opposite chirality at lower packing densities before forming an extended array of homochiral tri‐lobe ensembles at higher converges. This system displayed chirality at a variety of size scales from the molecular (≈1 nm) and domain (≈5 nm) to the tri‐lobe ensemble (≈10 nm) and extended array (>25 nm) levels. The chirality of the tri‐lobe ensembles dictated how the overall surface packing occurred and both homo‐ and heterochiral arrays could be reproducibly and reversibly formed and interchanged as a function of surface coverage. Finally, these chirally templated surfaces displayed remarkable enantiospecificity for naphtho[2,3‐a]pyrene molecules adsorbed in the second layer. Given its simplicity, reversibility, and rich degree of order, this system represents an ideal test bed for the investigation of symmetry breaking and the hierarchical transmission of chirality through multiple length scales.  相似文献   

12.
We studied the coverage-dependent self-assembly of the flat-lying phase of ethylthiolate on Au(111). At low coverage, we observed the formation of short stripes of chiral Au-(SC(2)H(5))(2) complexes that arrange in a disordered phase. The latter grow partly at the expense of the native Au(111) surface reconstruction, which is fully lifted for a coverage of ~0.60 ML. We found that the lift of the reconstruction and evaporation from step edges are competing adatom sources. Close to saturation coverage (0.70 to 0.75 ML), large, well-ordered domains with a (8 × √3)rectangular superstructure formed. Alternation of chirality was found in adjacent stripes as already reported for other short alkanethiolates. We suggest that, because of a simple geometrical consideration, the chirality should, on the contrary, be preserved in the stripe phase of longer alkanethiolates.  相似文献   

13.
Pettinger B  Danckwerts M  Krischer K 《Faraday discussions》2002,(121):153-65; discussion 229-51
Camphor has attracted considerable attention in electrochemical research because it adsorbs strongly on metal surfaces. Due to its surface activity it is able to inhibit surface reactions. Recently, camphor has been used in investigations of nonlinear surface dynamics and pattern formation. Details regarding its influence on the morphology of the metal surface, the significance of surface reconstruction, structural changes in the camphor adlayer and oxide formation remain unclear. We employ second harmonic generation (SHG) to elucidate the structural and electronic behaviour of Au(111) surfaces during camphor adsorption and desorption processes. Our technique allows measurement of the anisotropy of the SHG intensity while simultaneously performing cyclic voltammetry (CV) using the hanging meniscus configuration. The anisotropy data can be refined, yielding the symmetry components of the second order susceptibility tensor chi2 which are analysed as a function of external potential and related to the system's electrochemical behaviour. Results of SHG measurements are presented together with corresponding CV data and discussed with respect to the open questions mentioned above.  相似文献   

14.
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)‐step‐like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the C?C bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.  相似文献   

15.
Chiral self-assembled structures formed from organic molecules adsorbed on surfaces have been the subject of intense investigation in the recent decade, owing both to relevance in applications such as enantiospecific heterogeneous catalysis or chiral separation as well as to fundamental interest, for example, in relation to the origin of biomolecular homochirality. A central target is rational design of molecular building blocks allowing transfer of chirality from the molecular to the supramolecular level. We previously studied the surface self-assembly of a class of linear compounds based on an oligo(phenylene ethynylene) backbone, which were shown to form a characteristic windmill adsorption pattern on the Au(111) surface. However, since these prochiral compounds were intrinsically achiral, domains with oppositely oriented windmill motifs and related conformational surface enantiomers were always realized in equal proportion. Here we report on the enantioselective, high yield chemical synthesis of a structurally related but intrinsically chiral compound in which two peripheral tert-butyl substituents are replaced by sec-butyl groups, each containing an (S) chiral center. Using scanning tunneling microscopy under ultrahigh vacuum conditions, we characterize the adsorption structures formed from this compound on the Au(111) surface. The perturbation introduced by the modified molecular design is found to be sufficiently small so structures form that are closely analogous to those observed for the original tert-butyl substituted compound. However, as demonstrated from careful statistical analysis of high-resolution STM images, the introduction of the two chiral (S)-sec-butyl substituents leads to a strong preference for windmill motifs with one orientation, demonstrating control of the chiral organization of the molecular backbones through rational molecular design.  相似文献   

16.
Chirality is a crucial factor in a single-walled carbon nanotube (SWCNT) because it determines its optical and electronic properties. A chiral angle spanning from 0° to 30° results from twisting of the graphene sheet conforming the nanotube wall and is equivalently expressed by chiral indexes (n,m). However, lack of chirality control during SWCNT synthesis is an obstacle for a widespread use of these materials. Here we use first-principles density functional theory (DFT) and classical molecular dynamics (MD) simulations to propose and illustrate basic concepts supporting that the nanocatalyst structure may act as a template to control the chirality during nanotube synthesis. DFT optimizations of metal cluster (Co and Cu)∕cap systems for caps of various chiralities are used to show that an inverse template effect from the nascent carbon nanostructure over the catalyst may exist in floating catalysts; such effect determines a negligible chirality control. Classical MD simulations are used to investigate the influence of a strongly interacting substrate on the structure of a metal nanocatalyst and illustrate how such interaction may help preserve catalyst crystallinity. Finally, DFT optimizations of carbon structures on stepped (211) and (321) cobalt surfaces are used to demonstrate the template effect imparted by the nanocatalyst surface on the growing carbon structure at early stages of nucleation. It is found that depending on the step structure and type of building block (short chains, single atoms, or hexagonal rings), thermodynamics favor armchair or zigzag termination, which provides guidelines for a chirality controlled process based on tuning the catalyst structure and the type of precursor gas.  相似文献   

17.
Chiral molecule-driven asymmetric structures are known to be elusive because of the intriguing chirality transfer from chiral molecules to achiral species. Here, we found that the chiral assembly of BiOBr is independent of the chirality of the organic molecular inducer but dependent on geometric structural matching between the inducer and inorganic species. Diastereoisomeric sugar alcohols (DSAs) with identical numbers of carbon chiral centers and functional groups but with different R/S configurations and optical activities (OAs) were chosen as symmetry-breaking agents for inducing chiral mesostructured BiOBr films (CMBFs) under hydrothermal conditions. Multiple levels of chirality with different handedness were identified in the CMBFs. Density functional theory (DFT) calculations and molecular dynamics (MD) simulations suggest that asymmetric defects in the Br–Bi tetragonal cone caused by physically adsorbed DSAs on the surfaces of the BiOBr crystals are the geometric basis for triggering the chiral twist in the BiOBr monolayer. Our findings provide new insights for understanding the origin of chirality and the chiral transfer mechanism underlying the assembly of achiral species.

The chirality transfer is dependent on geometrical matching between the chiral inducer and inorganic species.  相似文献   

18.
Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.  相似文献   

19.
One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.  相似文献   

20.
In this paper, we describe for the first time the synthesis of new chiral nanosized metal oxide surfaces based on chiral self‐assembled monolayers (SAMs) coated with metal oxide (TiO2) nanolayers. In this new type of nanosize chiral surface, the metal oxide nanolayers enable the protection of the chiral self‐assembled monolayers while preserving their enantioselective nature. The chiral nature of the SAM/TiO2 films was characterized by variety of unique techniques, such as second‐harmonic generation circular dichroism (SHG‐CD), quartz crystal microbalance, and chiral adsorption measurements with circular dichroism spectroscopy. The chiral resolution abilities of the SAMs coated with metal oxide (TiO2) nanolayers were investigated in the crystallization of a racemic mixture of threonine and glutamic acid. Our proposed methodology for the preparation of nanoscale chiral surfaces described in this article could open up opportunities in other fields of chemistry, such as chiral catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号