首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The structural characterization of bis-cyclometalated palladium(II) compounds of formula Pd2[(micro-(C6X4)PPh2]2(micro-O2CR)2 [X = H, R = CH3 (3), CF3 (4), C(CH3)3 (5) and C6F5 (6); X = F, R = CH3 (7) and CF3 (8)], has confirmed its paddle wheel structure with two palladium atoms bridged by two acetates and two metalated phosphines in a head-to-tail arrangement. The Pd...Pd distances are in the range 2.6779(16)-2.7229(8) A. Under cyclic voltammetric conditions, compounds 3-6, in CH2Cl2 solution, were found to undergo a reversible oxidation peak in the range of potential values 0.84-1.25 V. A second partially-reversible oxidation is observed at more positive potentials (1.37-1.55 V). For compounds 3-5 in the presence of chlorides, the first oxidation becomes a two-electron process presumably leading to a neutral [Pd(III)-Pd(III)] species with a metal-metal bond.  相似文献   

2.
氢分子在金属表面的解离吸附与氢原子在金属体相的扩散是个典型的表面过程.前者在甲烷化及合成氨等基础化工反应中起着关键作用;后者常常导致金属材料的脆化与断裂,但过渡金属及其合金是安全和优良的储氢材料.因此,研究氢分子在金属表面的解离吸附与氢原子在金属体相的扩散,是多相催化与金属物理广泛感兴趣的课题,具有重要的理论和应用价值.本文采用分子动力学方法初步探讨了二者之间的关联.分子催化动力学为从微观层次上研究上述课题提供了一种理论方法.本文采用经过我们改进的半经验LEPS方法,计算了氢分子在Pd(100)和(110)晶面的解离和氢原子在钯表面与体相扩散的相互作用位能面,并根据计算结果探讨了其微观机理.  相似文献   

3.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

4.
Three different single crystals, Au(111), Au(332), and Au(331), were used as the substrate for palladium deposition in the underpotential deposition (UPD) regime. The Au(111) single crystal was used for control experiments to compare the behavior of the vicinal surfaces. Cyclic voltammetry in 0.1 M sulfuric acid solution, as well as electrochemical impedance spectroscopy (EIS) were used to study the hydrogen adsorption on the Pd thin films. Our results suggest that the voltammetric peaks at approximately 0.3 V versus the reversible hydrogen electrode (RHE) are related to the adsorption of hydrogen at large palladium terraces, and that at least two adjacent Pd rows are needed in order for the adsorption to take place. Further cycling to more positive potentials leads to the oxidation and slow dissolution of the Pd film. The behavior of the oxidation cycles is explained in terms of a higher stability of Pd at the steps.  相似文献   

5.
The dissolution of oxygen in polycrystalline palladium Pd(poly) at an O2 pressure of 100 Pa and temperatures of 500–950 K has been investigated by temperature-programmed desorption. At 500 K, the process yields a surface palladium film that includes an oxide-like reconstructed structure on a rarefied metal surface layer. At this temperature, palladium sorbs ~2 monolayers (ML) of oxygen. At 600–800 K, palladium dissolves up to ~140 ML of oxygen as a result of O2 chemisorption on the surface of the oxide film, penetration of Oads atoms under the oxide film, and their diffusion into the metal bulk. The dependence of the amount of oxygen sorbed by Pd(poly) (n) on the time of exposure to an O2 atmosphere is described by a nearparabolic function, n = atb, indicating that oxygen atoms diffuse in the metal lattice. The activation energy of this diffusion, Е dif, is ~83.5 kJ/mol. At high temperatures (800–950 K), palladium sorbs much less oxygen (≤10 ML). This is due to the complete decomposition of the surface oxide film, a process that markedly hampers the insertion of Oads atoms under the surface layer of the metal.  相似文献   

6.
Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface.  相似文献   

7.
H Emons  G Werner  W R Heineman 《The Analyst》1990,115(4):405-408
A.c. voltammetric measurements have shown that bovine and human immunoglobulin G are adsorbed at a mercury electrode over a broad potential range and at open circuit. A current signal at ca. -0.55 V was identified as being due to an interfacial process connected with reversible protein re-orientations in the adsorption layer and, possibly, with fast faradaic reactions of both adsorbed redox states of the immunoglobulin.  相似文献   

8.
The electroreduction kinetics of Pd(Hgly)2Cl2 on rotating palladium disk electrode was studied by means of cyclic voltammetry. The double layer range of the palladium charging curve showed a single wave with the diffusion limited current I d, which yielded the diffusion coefficient of Pd(Hgly)2Cl2 complex D = 6 × 10−6 cm2/s. The plotted direct and reverse voltammetric curves were linearized in coordinates E, log[I/(I dI)]. The slope of this line gave b k factor evidencing the slow electrochemical step. When [Cl] decreased from 1 to 0.2 M, E 1/2 potential shifted to positive values. This was accounted for by reversible cleavage of Cl ion from Pd(Hgly)2Cl2 complexes before the irreversible electrochemical step. The pulse galvanostatic experiment resulted in the double electrical layer capacity and roughness factors f of electrolytic palladium deposits. The calculated values of f from 60 to 310 were attributed to adsorption of glycine particles on the electrodeposited palladium surface, which promotes to increasing number of palladium microcrystal growing centers.  相似文献   

9.
《Electroanalysis》2004,16(4):253-259
Sodium montmorillonite was prepared via a colloidal chemical approach and deposited onto glassy carbon electrodes (GCE). Myoglobin was immobilized on the clay membrane modified electrode by spontaneous adsorption. Characterization of the myoglobin/clay/glassy carbon electrode (Mb/clay/GCE) showed a quasi‐reversible, electrochemical redox behavior of the adsorbed protein with a formal potential of ?0.380±0.010 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant was found to be strongly influenced by the buffer concentration. The Mb/clay/GCE was stable for several days in solution. The interaction of the immobilized Mb with nitric oxide (NO) is characterized by coordination chemistry. The reaction was found to be reversible and could be applied for NO detection in the nanomolar concentration range by a voltammetric analysis. In addition a mixed protein electrode with co‐immmobilized myoglobin (Mb) and cytochrome c (Cyt.c) was developed. By choice of the electrode potential both proteins can be addressed independently.  相似文献   

10.
We present an examination of palladium (Pd) nanoparticle growth on genetically modified tobacco mosaic virus (TMV1cys) nanotemplates via in situ small-angle X-ray scattering (SAXS). Specifically, we examine the role of the TMV1cys templates in Pd nanoparticle formation through the electroless reduction of Pd precursor by a chemical reducing agent as compared to identical conditions in the absence of the TMV1cys templates. We show that in the presence of TMV1cys, the viral nanotemplates provide preferential growth sites for Pd nanoparticle formation, as no measurable Pd particle growth was observed in the bulk solution. In situ SAXS confirmed that particle formation was due to the rapid adsorption of Pd atoms onto the TMV1cys templates at the very early stage of mixing, rather than adsorption of particles formed in the bulk solution. Importantly, Pd nanoparticles were significantly smaller and more uniform as compared to particle formation in the absence of TMV1cys. The Pd nanoparticle coating density was tunable based on Pd precursor concentration. Finally, we show that Pd particle growth on the TMV1cys templates was highly rapid, and complete within 33 s for most samples, in contrast to slower Pd particle growth in the absence of TMV templates. We envision that the results presented here will be valuable in furthering the fundamental understanding of the role of viral nanotemplates in particle formation, as well as of their utility in a wide range of applications.  相似文献   

11.
The anodic oxidation of Au+Pd alloys has been studied in solutions of 1 M H2SO4 and 0.1 M K2SO4 by voltammetric methods. A linear relationship between oxide reduction maximum and bulk alloy composition, often used to determine the surface composition of homogeneous alloys, could be shown to hold only for alloys up to 60 at% gold. At higher gold content the Au oxide peak must be additionally evaluated. With continuous cycling in acid solution the anodic dissolution of Pd, especially from gold-rich places, leads to a rather heterogeneous surface. The O--chemisorption is not governed by a transfer mechanism from Pd to Au surface atoms. The alloys are able to absorb the oxygen species generated in the positive potential region; however, this ability decreases with increase of the gold content.  相似文献   

12.
Chemisorption of hydrogen on metal surfaces requires the dissociation of the H2 molecule in the first place; this process has been experimentally investigated and theoretically described in terms of multi-dimensional potential energy diagrams. The adsorption of atomic hydrogen is frequently accompanied by displacements of the metal surface atoms leading to phenomena such as layer relaxation or surface reconstruction. Especially surface reconstruction may be regarded as a precursor stage for a progressive chemical attack of the hydrogen atoms also on the bulk metal, leading to the occupation of so-called “subsurface” sites, to bulk diffusion and, finally, to hydride compound formation. All these processes depend sensitively on the crystallographic structure of the surface, and some examples for H on Rh, Co and Pd surfaces will demonstrate the general correlation between the hydrogen surface concentration and the metal's cohesive energy, surface crystallography, and its tendency to reconstruct.  相似文献   

13.
The dissolution and adsorption of hydrogen atoms was determined as a function of potential in the region of the alpha phase of a smooth Pd wire in 0.5 M H2SO4, 0.5 M KOH, and 0.5 M HCl by a pulse technique. Specifically adsorbable chloride ions were found to decrease the hydrogen coverage at constant potential as on platinum. In contrast to platinum hydroxyl ions did not lead to an increase of the hydrogen bond strength. The isotherms of hydrogen adsorption can be approximated by a Temkin type relationship in a range of medium coverage. The logarithm of the bulk concentration of dissolved hydrogen atoms directly below the surface was a linear function of potential between about 0.25 V and 0.1 V, interpretable in terms of the non-ideal behaviour of the atoms in the first layer below the surface.  相似文献   

14.
Cyclic voltammetry on the Hg electrode was used to investigate the electrochemical behavior of NaCl/NaHCO3 electrolyte solutions supersaturated with respect to Zn sulfide phases. The voltammetric results clearly show how an Hg electrode, due to exchange between Hg2+ from an HgSadlayer and Zn2+ from solution, becomes the site for surface ZnSadlayer formation in the potential range ?0.45 to ?0.6?V. The exchange reaction is reversible, and the surface-formed ZnSadlayer persists at the Hg electrode surface until ?1.3?V during cathodic scans. Near ?1.3?V, it is reduced. In the same solution, evidence for reduction of bulk Zn sulfide species including nanoparticles was not obtained. The approach emphasized here can be readily extended to any other system consisting of metal electrode and chalcogenide anions, pointing to the importance of choosing experimental conditions (i.e., deposition potential, stirring, and accumulation times) to avoid artifacts and wrong interpretation of data due to surface formation of metal sulfide species.  相似文献   

15.
The mechanism of interaction of lipoic acid-palladium complex (LAPd) with double-stranded DNA (dsDNA), as well as the adsorption process and the redox behaviour of LAPd, of its ligand lipoic acid (LA), and of the LAPd-containing dietary supplement, Poly-MVA™, were studied using atomic force microscopy (AFM) and voltammetry at highly oriented pyrolytic graphite (HOPG) and glassy carbon electrodes. In the presence of small concentrations of LAPd molecules, the dsDNA molecules appeared less knotted and bended, and more extended on the HOPG surface, when compared with the dsDNA molecules adsorbed from the same dsDNA solution concentration. The voltammetric results demonstrated the interaction of both LAPd and Poly-MVA™ with dsDNA, but no oxidative damage caused to dsDNA was detected. AFM images revealed different adsorption patterns and degree of surface coverage and correlation with the structure, the concentration of the solution, the applied potential, and the voltammetric behaviour of the LA, LAPd and Poly-MVA™ was observed. The application of a negative potential caused the dissociation of the LAPd complex and Pd(0) nanoparticle deposition, whereas the application of a positive potential induced the oxidation of the LAPd complex and the formation of a mixed layer of LA and palladium oxides.  相似文献   

16.
The decomposition of ethene on the Pd(111) surface was studied at effective pressures in the 10(-8) to 10(-7) mbar range and at sample temperatures between 300 and 700 K, using an effusive capillary array beam doser for directional adsorption, LEED, AES, temperature programmed reaction, and TDS. In the temperature range of 350-440 K increasingly stronger dehydrogenation of the ethene molecule is observed. Whereas at 350 K an ethylidyne adlayer is still present after adsorption, already at temperatures around 440 K complete coverage of the surface by carbon is attained, while the bulk still retains the properties of pure Pd. Beyond 440 K a steady-state surface C coverage is established, which decreases with temperature and is determined by detailed balancing between the ethene gas-phase adsorption rate and the migration rate of carbon into the Pd bulk. This process gives rise to the formation of a "partially carbon-covered Pd(x)C(y) surface". Above 540 K the surface-bulk diffusion of adsorbed carbon becomes fast, and in the UHV experiment the ethene adsorption rate becomes limited by the ethene gas-phase supply. The carbon bulk migration rate and the steady-state carbon surface coverage were determined as a function of the sample temperature and the ethene flux. An activation energy of 107 kJ mol(-1) for the process of C diffusion from surface adsorption sites into the subsurface region was derived in the temperature range of 400-650 K by modeling the C surface coverage as a function of temperature on the basis of steady-state reaction kinetics, assuming a first-order process for C surface-subsurface diffusion and a second-order process for C(ads) formation by dissociative C2H4 adsorption.  相似文献   

17.
Leaching of palladium species from Pd nanoparticles under C--C coupling conditions was observed for both Heck and Suzuki reactions by using a special membrane reactor. The membrane allows the passage of palladium atoms and ions, but not of species larger than 5 nm. Three possible mechanistic scenarios for palladium leaching were investigated with the aim of identifying the true catalytic species. Firstly, we examined whether or not palladium(0) atoms could leach from clusters under non-oxidising conditions. By using our membrane reactor, we proved that this indeed happens. We then investigated whether or not small palladium(0) clusters could in fact be the active catalytic species by analysing the reaction composition and the palladium species that diffused through the membrane. Neither TEM nor ICP analysis supported this scenario. Finally, we tested whether or not palladium(II) ions could be leached in the presence of PhI by oxidative addition and the formation of [Pd(II)ArI] complexes. Using mass spectrometry, UV-visible spectroscopy and 13C NMR spectroscopy, we observed and monitored the formation and diffusion of these complexes, which showed that the first and the third mechanistic scenarios were both possible, and were likely to occur simultaneously. Based on these findings, we maintain that palladium nanoparticles are not the true catalysts in C--C coupling reactions. Instead, catalysis is carried out by either palladium(0) atoms or palladium(II) ions that leach into solution.  相似文献   

18.
The stability of C60 and palladium two-component films, C60/Pd, has been investigated. The effect of different polymerization conditions on the electrochemical stability of the film upon prolonged potential cycling has been studied. Stable voltammetric behavior was observed for polymers formed at potentials less negative than the potential of third C60 reduction step. The incorporation of palladium particles into the structure of C60/Pd polymers increases the polymer stability. The C60/Pd films are doped with supporting electrolyte cations during reduction. The size of these cations is a crucial factor in determining the stability of the film. A strong solvent effect on the potential stability of the film was also observed. The wildest range of stable voltammetric properties was found for acetonitrile and N,N-dimethylformamide. No effect of the temperature on the film stability was observed. The results reported in this work allow for the determination of the optimal conditions for the formation of stable C60/Pd films.  相似文献   

19.
采用氢-钯相互作用的五参数Morse势,用对势方法研究了氢原子在Pd(100)、Pd(111)和Pd(110)低指数平坦表面上的吸附和扩散,得到氢原子在三个表面上的吸附位、吸附几何、结合能和本征振动等数据,计算结果和实验结果符合得很好。在此基础上,系统地研究了三个系统的吸附扩散势能面结构。  相似文献   

20.
Deuterium desorption and reaction between deuterium and oxygen to water has been studied on ultrathin vanadium oxide structures prepared on Pd(111). The palladium sample was part of a permeation source, thus enabling the supply of atomic deuterium to the sample surface via the bulk. Different vanadium oxide films have been prepared by e-beam evaporation in UHV under oxygen atmosphere. The structure of these films was determined using low energy electron diffraction and scanning tunneling microscopy. The mean translational energy of the desorption and reaction products has been measured with a time-of-flight spectrometer. The most stable phases for monolayer and submonolayer VOx are particular surface-V2O3 and VO phases at 523 and 700 K, respectively. Thicker films grow in the form of bulk V2O3. The mean translational energy of the desorbing deuterium species corresponds in all cases to the thermalized value. Apparent deviations from this energy distribution could be attributed to different adsorption/desorption and/or accommodation behaviors of molecular deuterium from the gas phase on the individual vanadium oxide films. The water reaction product shows a slightly hyperthermal mean translational energy, suggesting that higher energetic permeating deuterium contributes with higher probability to the water formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号