首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the flow coefficient of a gas jet ejected from an orifice/nozzle into a subsonic/transonic cross-flow on the flow and the jet Mach numbers, the off-design ratio, the nozzle inclination angle, β, and other determining parameters is considered. The physical nozzle flow pattern is constructed on the basis of experimental data obtained for 0.3< M<1.75 and β=60°, 90°, and 120°. The results of measuring the pressure upstream and downstream of the orifice and on the windward and leeward orifice generators are presented. It is shown that the flow rate coefficient of a jet ejected into a cross-flow may exceed that of a similar jet outflowing into a flooded space. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 65–70, May–June, 1998.  相似文献   

2.
 The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, α=4° and α=8.5°, which correspond to the attached and separated steady airfoil flows, respectively. Received: 6 June 2000 / Accepted: 18 October 2001  相似文献   

3.
 An experimental investigation was carried out to study the enhancement of the heat transfer from a heated flat plate fitted with rectangular blocks of 1 × 2 × 2 cm3 dimensions in a channel flow as a function of Reynolds number (Reh), spacing (S y ) of blocks in the flow direction, and the block orientation angle (α) with respect to the main flow direction. The experiments were performed in a channel of 18 cm width and 10 cm height, with air as the working fluid. For fixed S x =3.81 cm, which is the space between the blocks in transverse to the flow direction, the experimental ranges of the parameters were S y =3.33–4.33 cm, α=0–45°, Reh=7625–31550 based on the hydraulic diameter and the average velocity at the beginning of the test section in the channel. Correlations for Nusselt number were developed, and the ratios of heat transfer with blocks to those with no blocks were given. The results indicated that the heat transfer could be enhanced or reduced depending on the spacing between blocks, and the block orientation angle. The maximum heat transfer rate was obtained at the orientation angle of 45°. Received on 13 December 2000 / Published online: 29 November 2001  相似文献   

4.
The flow and heat transfer in an inclined and horizontal rectangular duct with a heated plate longitudinally mounted in the middle of cross section was experimentally investigated. The heated plate and rectangular duct were both made of highly conductive materials, and the heated plate was subjected to a uniform heat flux. The heat transfer processes through the test section were under various operating conditions: Pr ≈ 0.7, inclination angle ϕ = −60° to +60°, Reynolds number Re = 334–1,911, Grashof number Gr = 5.26 × 102–5.78 × 106. The experimental results showed that the average Nusselt number in the entrance region was 1.6–2 times as large as that in the fully developed region. The average Nusselt numbers and pressure drops increased with the Reynolds number. The average Nusselt numbers and pressure drops decreased with an increase in the inclination angle from −60° to +60° when the Reynolds number was less than 1,500. But when the Reynolds number increased to over about 1,800, the heat transfer coefficients and pressure drops were independent of inclination angles.  相似文献   

5.
The mean characteristics of the flow due to mixing of two non-axial plane jets in a confined passage, were reported previously by Manjunath et al. (Exp. Fluids 11 (1991), 17–24), as part I. In this paper, the turbulence characteristics of the flow are discussed. The various components of the Reynolds stress tensor are reported for the four inlet angles considered, viz., 15°, 30°, 45° and 60°. As expected from the mean flow field, the inlet angle influences the distribution of the various turbulence components through the relative size of the recirculation zones and the turbulence field is different for the smaller angles of 15° and 30° in comparison to those for 45° and 60°.  相似文献   

6.
The leeside vortex structures on delta wings with sharp leading edges were studied for supersonic flow at the Institute of Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The experiments were carried out with three wings with sweep angles of χ=68°, 73°, and 78° and parabolic profiles in the 0.6 × 0.6 m2 test section of the blow-down wind tunnel T-313 of the institute. The test conditions were varied from Mach numbers M=2 to 4, unit Reynolds numbers from Re l=26 × 106 to 56 × 106 m−1, and angles of attack from α=0° to 22°. The results of the investigations revealed that for certain flow conditions shocks are formed above, below, and between the primary vortices. The experimental data were accurate enough to detect the onset of secondary and tertiary separation as well as other boundaries. The various flow regimes discussed in the literature were extended in several cases. The major findings are reported. Received: 6 September 1999/Accepted: 24 January 2000  相似文献   

7.
Convective heat transfer in a transverse cavity with a small aspect ratio, angle of wall inclination ϕ = 30–90°, and heated bottom, frontal, and rear walls of the cavity is studied experimentally. Temperature distributions are measured in longitudinal and transverse sections on three walls; temperature fields are measured over the entire heated surface. Local and mean heat-transfer coefficients are calculated. The highest intensification of heat transfer is found to occur on the rear wall for low values of ϕ Reconstruction of the one-cell structure to the two-cell structure of the primary vortex in the cavity leads to a drastic decrease in heat transfer over the cavity span from the end faces toward the center in the case with ϕ = 60 and 70°. A certain increase in the mean heat-transfer coefficient averaged over the entire heated surface is noted for ϕ = 60°. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 23–29, July–August, 2007.  相似文献   

8.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

9.
 The dynamic character of the hemisphere-cylinder wake was studied over the entire range of angles of attack, i.e. α=0° to 90°. The work was carried out in two wind tunnel facilities, using hot-wire anemometry. Velocity auto- and cross-spectra in the wake reveal that the leeward vortices exhibit periodic motions, with multiple dominant frequencies for 24°<α<42°, one single dominant frequency for 15°<α<22°, while no periodic activity is detected for α<15°. In the regime 15°<α<42°, a new periodic heaving motion of the vortices is documented. Vortex heaving transitions to the more classical vortex shedding periodicity in the neighborhood of α=45°. Above α=55°, vortex shedding occurred at a single Strouhal number of 0.15. The limiting case α=90° was investigated in detail for semi-infinite and finite hemisphere-cylinder models and comparisons were made to axisymmetric bodies with different nose shapes. Received: 2 March 1998 / Accepted: 22 October 1998  相似文献   

10.
The pattern of the flow in the vicinity of an annular system of jets exiting into a supersonic stream from orifices on a cylindrical surface with a turbulent boundary layer is experimentally investigated Four typical flow regimes are recorded The effect of the jet number and the nozzle-to-outer pressure ratio on the extent of the separation zone and its structure ahead of and behind the jet system is determined Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–27, January–February, 1999.  相似文献   

11.
The present study deals with the experimental investigations of static pressure and mean velocity fields obtained as a result of the interaction of two plane turbulent jets at impingement angles of α equal to 30° and 45°, with an additional central jet in a confined space. The investigation is carried out for the velocity ratios of U c/U o=1.0, 2.0 and 3.0, where U c and U o are the velocities in the central plane at the exit of the central jet and the outer jets, respectively. The introduction of the central jet alters the various recirculation zones present in the flow field for all the cases considered above. Also, the change in the velocity ratio U c/U o has a significant effect on the pressure and mean velocity flow fields. Flow visualisation results are presented which give a better physical insight into the flow field considered. Received: 26 July 1999/Accepted: 14 February 2000  相似文献   

12.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

13.
Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.  相似文献   

14.
The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03–0.3 (vane angle θv = 15°–60°), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, θv = 15°) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1–0.3, θv = 30°–60°). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio (θv = 45°) that at the low swirl ratio (θv = 15°), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the tornado-like vortex structure and the ground surface, ultimately leading to better predictions of tornado-induced wind loads on civil structures.  相似文献   

15.
The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source.  相似文献   

16.
In order to evaluate characteristics of the liquid film flow and their influences on heat and mass transfer, measurements of the instantaneous film thickness using a capacitance method and observation of film breakdown are performed. Experimental results are reported in the paper. Experiments are carried out at Re = 250–10000, T in = 20–50°C and three axial positions of vertically falling liquid films for film thickness measurements. Instantaneous surface waveshapes are given by the interpretation of the test data using the cubic spline method. The correlation of the mean film thickness versus the film Reynolds number is also given by fitting the test data. It is revealed that the surface wave has nonlinear behavior. Observation of film breakdown is performed at Re = 1.40 × 103–1.75 × 104 and T in = 85–95°C. From experimental results, the correlation of the film breakdown criterion can be obtained as follows: Bd = 1.567 × 10−6 Re 1.183  相似文献   

17.
Open-celled foam geometries show great promise in heat/mass transfer, chemical treatment, and enhanced mixing applications. Flow measurements on these geometries have consisted primarily of observations of the upstream and downstream effects the foam has on the velocity field. Unfortunately, these observations give little insight into the flow inside the foam. We have performed quantitative flow measurements inside a scaled replica of a metal foam, ϕ = 0.921, D Cell = 2.5 mm, by Magnetic Resonance Velocimetry to better understand the fluid motion inside the foam and give an alternative method to determine the foam cell and pore sizes. Through these 3-D, spatially resolved measurements of the flow field for a cell Reynolds number of 840, we have shown that the transverse motion of the fluid has velocities 20–30% of the superficial velocity passing through the foam. This strong transverse motion creates and dissipates streamwise jets with peak velocities 2–3 times the superficial velocity and whose coherence length is strongly correlated to the cell size of the foam. This complex fluid motion is described as “mechanical mixing” and is attributed to the geometry of the foam. A mechanical dispersion coefficient, D M, was formed which demonstrates the transverse dispersion of this geometry to be 14 times the kinematic viscosity and 10 times the thermal diffusivity of air at 20°C and 1 atm.  相似文献   

18.
The ultra-low Reynolds number airfoil wake   总被引:1,自引:0,他引:1  
Lift force and the near wake of an NACA 0012 airfoil were measured over the angle (α) of attack of 0°–90° and the chord Reynolds number (Re c ), 5.3 × 103–5.1 × 104, with a view to understand thoroughly the near wake of the airfoil at low- to ultra-low Re c . While the lift force is measured using a load cell, the detailed flow structure is captured using laser-Doppler anemometry, particle image velocimetry, and laser-induced fluorescence flow visualization. It has been found that the stall of an airfoil, characterized by a drop in the lift force, occurs at Re c  ≥ 1.05 × 104 but is absent at Re c  = 5.3 × 103. The observation is connected to the presence of the separation bubble at high Re c but absence of the bubble at ultra-low Re c , as evidenced in our wake measurements. The near-wake characteristics are examined and discussed in detail, including the vortex formation length, wake width, spanwise vorticity, wake bubble size, wavelength of K–H vortices, Strouhal numbers, and their dependence on α and Re c .  相似文献   

19.
The process of vortex formation in a cavity with inclined walls, which has a moderate aspect ratio, is experimentally studied, and the distribution of pressure coefficients is measured. The angle of inclination of the side walls ϕ is varied from 30 to 90°. It is found that the flow in the cavity becomes unstable in the range of inclination angles ϕ = 60–70°. Flow reconstruction occurs, which substantially alters the surface-temperature and static-pressure distributions. Large changes in these characteristics and their nonuniform distributions for these angles are observed across the cavity on its frontal wall and on the bottom. For small angles (ϕ = 30 and 45°), the pressure on the rear wall drastically increases, which leads to a small increase in pressure averaged over the entire cavity surface. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 68–76, September–October, 2006.  相似文献   

20.
Aerodynamic forces and flow fields of a two-dimensional hovering wing   总被引:1,自引:1,他引:0  
This paper reports the results of an experimental investigation on a two-dimensional (2-D) wing undergoing symmetric simple harmonic flapping motion. The purpose of this investigation is to study how flapping frequency (or Reynolds number) and angular amplitude affect aerodynamic force generation and the associated flow field during flapping for Reynolds number (Re) ranging from 663 to 2652, and angular amplitudes (α A) of 30°, 45° and 60°. Our results support the findings of earlier studies that fluid inertia and leading edge vortices play dominant roles in the generation of aerodynamic forces. More importantly, time-resolved force coefficients during flapping are found to be more sensitive to changes in α A than in Re. In fact, a subtle change in α A may lead to considerable changes in the lift and drag coefficients, and there appears to be an optimal mean lift coefficient around α A = 45°, at least for the range of flow parameters considered here. This optimal condition coincides with the development a reverse Karman Vortex street in the wake, which has a higher jet stream than a vortex dipole at α A = 30° and a neutral wake structure at α A = 60°. Although Re has less effect on temporal force coefficients and the associated wake structures, increasing Re tends to equalize mean lift coefficients (and also mean drag coefficients) during downstroke and upstroke, thus suggesting an increasing symmetry in the mean force generation between these strokes. Although the current study deals with a 2-D hovering motion only, the unique force characteristics observed here, particularly their strong dependence on α A, may also occur in a three-dimensional hovering motion, and flying insects may well have taken advantage of these characteristics to help them to stay aloft and maneuver. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号