首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetization reversal of epitaxial single-crystal Fe films has been studied by combining domain images and hysteresis loops. The reversal is quantitatively described by combining the coherent rotation model and the domain wall displacement model. The pinning energy exerted on the domain walls and the domain wall angle at the switching fields are obtained by fitting this model to experimental hysteresis loops. The field-dependent pinning energy and the domain wall angle in the reversal process, and the contributions of second-order magneto-optic effect to hysteresis loops, are revealed to be two important features of single-crystal Fe films.  相似文献   

2.
Magnetization dynamics in thin films and multilayers   总被引:1,自引:0,他引:1  
The behavior of spin waves is influenced by essentially all the parameters which characterize a magnetic material – exchange interactions, anisotropy, surface effects, dipolar interactions, phase transitions and imperfections. Thus measurements of spin wave frequencies can give important information on characterizing different magnetic materials and structures. In this paper we outline the major results and calculational methods for long-wavelength spin waves in thin films and multilayers. While the primary attention is on ferromagnet-based structures, long-wavelength spin waves in antiferromagnets are also discussed. We indicate how particular measurements of spin wave frequencies can be used to extract the fundamental parameters of the different structures.  相似文献   

3.
This paper presents a quantitative method used to determine the magnetocrystalline anisotropy constants of thin magnetic films from normalized magnetization data measured on a magneto-optic Kerr effect (MOKE) magnetometer. The method is based on a total magnetic energy density model, and incorporates higher order effects in the detected signal. By way of illustration, the method is used to determine the magnetocrystalline anisotropy constants of epitaxial thin Fe films on GaAs substrates, which have different overlayers. It is shown that a Cr overlayer on a 30 ML thick Fe film reduces the uniaxial contribution to the magnetic anisotropy compared with an Au overlayer.  相似文献   

4.
We report here on an X-ray absorption study of La0.7Sr0.3MnO3 films epitaxially grown on SrTiO3 substrate. The local organization around Mn in oriented films with 600 Å in thickness was investigated by polarized Extended X-ray Absorption Fine Structure. The angle between electric field vector and film surface was set equal to 5° and 70° to investigate almost independently the contribution of the manganese neighbors situated in and out of the film plane. The first neighboring shell oxygen is found to be the same in both geometries, but small changes in the next neighboring contribution are observed. These changes are associated with variation in the Mn–Mn bond length. A small in-plane elongation (3%) is observed in the constrained films with respect to the unconstrained case.  相似文献   

5.
Series of Fe thin films have been prepared by thermal evaporation onto glass and Si(1 0 0) substrates. The Rutherford backscattering (RBS), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the four point probe techniques have been used to investigate the structural and electrical properties of these Fe thin films as a function of the substrate, the Fe thickness t in the 76-431 nm range and the deposition rate. The Fe/Si samples have a 〈1 1 0〉 for all thicknesses, whereas the Fe/glass grows with a strong 〈1 0 0〉 texture; as t increases (>100 nm), the preferred orientation changes to 〈1 1 0〉. The compressive stress in Fe/Si remains constant over the whole thickness range and is greater than the one in Fe/glass which is relieved when t > 100 nm. The grain size D values are between 9.2 and 30 nm. The Fe/glass films are more electrically resistive than the Fe/Si(1 0 0) ones. Diffusion at the grain boundary seems to be the predominant factor in the electrical resistivity ρ values with the reflection coefficient R greater in Fe/glass than in Fe/Si. For the same thickness (100 nm), the decrease of the deposition rate from 4.3 to 0.3 Å/s did not affect the texture and the reflection coefficient R but led to an increase in D and a decrease in the strain and in ρ for both Fe/glass and Fe/Si systems. On the other hand, keeping the same deposition rate (0.3 Å/s) and increasing the thickness t from 76 to 100 nm induced different changes in the two systems.  相似文献   

6.
We have studied the spin-resolved electronic properties of dislocation lines on the Fe double-layer (DL) on W(1 1 0) by spin-polarized scanning tunneling spectroscopy. The data reveal that the dislocation lines are ferromagnetically ordered with the magnetic contrast exhibiting a pronounced bias-dependence. By comparing tunneling spectra which were measured on the pseudomorphic DL and at different lateral separation from the dislocation line, we find a pronounced shift of a peak which originally appears at positive sample bias towards the Fermi level EFEF. In contrast, the binding energy of a peak just below EFEF remains constant but increases in intensity. This causes a pronounced modification of the bias voltage-dependent magnetic asymmetry.  相似文献   

7.
Hexagonal SiC thin films have been deposited using radio frequency reactive magnetron sputtering technique by varying the substrate temperature and other deposition conditions. Prior to deposition surface modification of the substrate Si(1 0 0) played an important role in deposition of the hexagonal SiC structure. The effect of substrate temperature during deposition on structure, composition and surface morphology of the SiC films has been analyzed using atomic force microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. X-ray diffraction in conventional θ-2θ mode and omega scan mode revealed that the deposited films were crystalline having 8H-SiC structure and crystallinity improved with increase of deposition temperature. The bonding order and Si-C composition within the films showed improvement with the increase of deposition temperature. The surface of thin films grew in the shape of globes and columns depending upon deposition temperature. The optical properties also showed improvement with increase of deposition temperature and the results obtained by ellipsometry reinforced the results of other techniques.  相似文献   

8.
New morphologies of net-like and flake-like TiO2 thin films with different concentrations of Fe dopant were successfully fabricated by micro-arc oxidation (MAO) process of Ti plates and a subsequent chemical treatment of the as-prepared MAO-TiO2 thin films. It was found that Fe ions can be easily introduced into the MAO-TiO2 samples with the increase concentration of K4(FeCN)6·3H2O precursor, and the amount of Fe determined the morphologies of TiO2 thin films after chemical treatment; net-like morphology was observed with low Fe dopant, while it transformed to a flake-like one when Fe exceeds 1.7 at.%. UV-vis spectroscopy test showed that the absorption edge of the Fe ions doped TiO2 thin films with new morphologies has an obvious red shift.  相似文献   

9.
以氯化铵、氯化镉、氢氧化钾和硫脲为反应物采用化学水浴法制备了硫化镉薄膜,为了作对比研究,采用射频磁控溅射以硫化镉为靶材,氩气为溅射气体,制备了硫化镉薄膜。采用X射线衍射、扫描电子显微镜和紫外-可见光光谱仪分别表征了硫化镉薄膜的结构、形貌和光学吸收特性。结果表明,采用以上两种方法制备的硫化镉均具有(002)择优取向,溅射法制备的硫化镉薄膜较致密,薄膜表面较光滑,平均晶粒尺寸在20~30nm;水浴法制备的硫化镉薄膜颗粒尺寸较小,缺陷较多。除了在短波段溅射所得硫化镉薄膜的透过率略差于水浴法所得硫化镉薄膜之外,溅射法制备的硫化镉薄膜的性能整体上优于水浴法制备的薄膜。两种方法制备的硫化镉薄膜的能隙在2.3~2.5eV。  相似文献   

10.
We have investigated the in-plane magnetization reversal in FeSm thin films and discovered that it can be controlled through an induced anisotropy. For films with an induced easy direction, reversal is ultra fast and can be characterized approximately using the Fatuzzo model. In films with no pronounced induced easy axis, the reversal is much slower and can be described using a logarithmic model. We have also investigated the short time (1–50 s) dependence of the remanent coercivity and fitted to logarithmic equations. For films with no pronounced easy axis, the time dependence of the coercivity correlates with the film thickness, indicating that the switching volume scales with thickness. For films with an induced easy direction, the time dependence of the coercivity is essentially constant, independent of film thickness, indicating no scalable switching volume.  相似文献   

11.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

12.
Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The M-H loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.   相似文献   

13.
Solid-state synthesis in Ni/Fe/MgO(001) bilayer epitaxial thin films has been studied experimentally. The phase sequence Fe/Ni→(~350°C)Ni3Fe→(~400°C)NiFe→(~ 550°C)γpar is formed as the annealing temperature increases. The crystal structure in the invar region consists of epitaxially intergrown single-crystal blocks consisting of the paramagnetic γpar and ferromagnetic NiFe phases, which satisfy the orientation relationship [100](001)NiFe ∥ [100](001) γpar. It has been shown that the nucleation temperatures of the Ni3Fe, NiFe, and γpar phases coincide with the temperatures of solid-state transformations in the Ni-Fe system.  相似文献   

14.
The antimony doped tin oxide (SnO2:Sb) (ATO) thin films were prepared by oblique angle electron beam evaporation technique. X-ray diffraction, field emission scanning electron microscopy, UV-vis-NIR spectrophotometer and four-point probe resistor were employed to characterize the structure, morphology, optical and electrical properties. The results show that oblique angle deposition ATO thin films with tilted columns structure are anisotropic. The in-plane birefringence of optical anisotropy is up to 0.035 at α = 70°, which means that it is suitable as wave plate and polarizer. The electrical anisotropy of sheet resistance shows that the sheet resistance parallel to the deposition plane is larger than that perpendicular to the deposition plane and it can be changed from 900 Ω/□ to 3500 Ω/□ for deposition angle from 40° to 85°, which means that the sheet resistance can be effectively tuned by changing the deposition angle. Additionally, the sandwich structure of SiO2 buffer layer plus normal ATO films and oblique angle deposition ATO films can reduce the resistance, which can balance the optical and electrical anisotropy. It is suggested that oblique angle deposition ATO thin films can be used as transparent conductive thin films in solar cell, anti-foggy windows and multifunctional carrier in liquid crystal display.  相似文献   

15.
Carbon films were grown on a Pt(1 1 1) single crystal by ethylene decomposition at elevated temperatures (1000-1300 K). Depending on the preparation conditions, different carbon structures formed on the metal surface such as flat and curved graphitic layers, carbon particles and carbon nanowires. Although these carbon films exhibited a high density of surface defects, gold interacted only weakly with the carbon surface. CO adsorption on the Au/carbon systems was very similar to that observed for various Au/oxide systems previously studied. This finding strongly indicates that CO adsorption on gold is essentially independent of the nature of support.  相似文献   

16.
Cu-In-O composite thin films were deposited by reactive DC magnetron sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/vis spectrophotometer, four-probe measurement and Seebeck effect measurement, etc. The samples contain Cu, In and O. The ratios of Cu to In and O to In increase with increase in O2 flow rates. The ratio of Cu to In is over 1 and this suggests that Cu is in excess. The obtained Cu-In-O thin films are very possibly made of rhombohedral In2O3 and monoclinic CuO. Transmittance of the films decreases with increase in O2 flow rate. The decrease in transmittance results from increase in Cu content in the films. The optical band gap of all the samples is estimated to be 4.1-4.4 eV, which is larger than those of In2O3 and CuO. The sheet resistance of the films decreases with increase in O2 flow rate. Conductivity of the films is a little low, due to the addition of Cu and the poor crystalline quality of the film. The conduction behavior of the films is similar to that of In2O3 and the conduction mechanism of Cu-In-O thin films is through O vacancy.  相似文献   

17.
Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature.  相似文献   

18.
D.Y. Noh  Y. Kim  S.-J. Oh 《Surface science》2007,601(23):5555-5558
We study the growth of Fe films on GaAs(1 0 0) at a low temperature, 140 K, by in situ X-ray reflectivity (XRR) using synchrotron radiation. The XRR curves are well modeled by a single Fe layer on GaAs both at the growth temperature and after annealed at the room temperature. We found that the surface became progressively rougher during the growth with the growth exponent, βS = 0.43 ± 0.14. The observed βS is attributed to the restricted interlayer diffusion at the low growth temperature. The change of the interface width during growth was minimal. When the Fe film was annealed to room temperature, the surface smoothed, keeping the interface width almost unchanged. The confinement of the interface derives from that the diffusion of Ga and As proceeds via the inefficient bulk diffusion, and the overlying Fe film is kinetically stabilized.  相似文献   

19.
Ni-Mn-Ga thin films have been fabricated by using magnetron sputtering technique under various substrate negative bias voltages. The effect of substrate negative bias voltage on the compositions and surface morphology of Ni-Mn-Ga thin films was systematically investigated by energy dispersive X-ray spectrum and atomic force microscopy, respectively. The results show that the Ni contents of the thin films increase with the increase of the substrate negative bias voltages, whereas the Mn contents and Ga contents decrease with the increase of substrate negative bias voltages. It was also found that the surface roughness and average particle size of the thin films remarkably decrease with the increase of substrate negative bias voltages. Based on the influence of bias voltages on film compositions, a Ni56Mn27Ga17 thin film was obtained at the substrate negative bias voltage of 30 V. Further investigations indicate that the martensitic transformation start temperature of this film is up to 584 K, much higher than room temperature, and the film has a non-modulated tetragonal martensitic structure at room temperature. Transmission electron microscopy observations reveal that microstructure of the thin film exhibits an internally (1 1 1) type twinned substructure. The fabrication of Ni56Mn27Ga17 high-temperature shape memory alloy thin film will contribute to the successful development of microactuators.  相似文献   

20.
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e or h+ traps and reduce e/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号