首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an asymptotic expansion solution of the constitutive equation of hardening materials is presented. Its 1st asymptotic integration can give an approximate one with good enough accuracy and the second asymptotic one improves the precision of solutions further. The steps of its algorithms are fairly simple and clear, and its computational workload is considerably reduced. It can be easily incorporated into a general purpose finite element program.The Chinese original of this article was published in the Chinese edition ofActa Mechanica Solida Sinica, No. 1, 1986.  相似文献   

2.
循环硬化材料本构模型的隐式应力积分和有限元实现   总被引:1,自引:0,他引:1  
针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(Ratcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Consistent Tangent Modulus)矩阵的表达式;最后,通过ABAQUS用户材料子程序UMAT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。  相似文献   

3.
IntroductionAyieldingcriterionandtheassociatedflowtheorywereproposedbyHill[1]forinitiallyorthotropicmetalsin 1 948,whichareusedbroadly .AquadraticformofstressesisusedastheplasticpotentialthatisindependentofhydrostaticstressinHillplasticitytheory .Butcompressedbyhydrostaticstress,considerabledeformationwillbeproducedinorthotropicmaterials.Inthecaseofcyclicloading ,duetoBauschingereffect,thekinematichardeningcannotbeneglected .Inthispaper,kinematichardeningandproportionalhardeningareconsidered…  相似文献   

4.
Integral constitutive equations of elastic-plastic materials   总被引:1,自引:0,他引:1  
In this paper the integral constitutive equations of elastic-plastic materials are studied. The endochronic theory can be deduced from this theory. It is shown that the endochronic should be selected compatible with the yield function of the calssical plasticity and this can be considered as a principle of selecting endochronic. Applying this principle the appropriate endochronics of the plastically compressible materials and the orthotropic materials are derived. The second approximate theory of the integral constitutive equation is also discussed in this paper.This paper was reported by the National Natural Science Foundation of China.  相似文献   

5.
钟万勰院士于1991年首先提出计算矩阵指数的精细积分方法,其要点是2N类算法和增量存储。精细积分方法可给出矩阵指数在计算机意义上的精确解,为常微分方程的数值计算提供了高精度、高稳定性的算法,现已成功应用于结构动力响应、随机振动、热传导以及最优控制等众多领域。本文首先介绍矩阵指数精细积分方法的提出、基本思想和发展;然后依次介绍在时不变/时变线性微分方程、非线性微分方程以及大规模问题求解中发展起来的各种精细积分方法,分析了其优缺点和适用范围;最后介绍了精细积分方法的基本思想在两点边值问题、椭圆函数和病态代数方程等问题的扩展应用,进一步展示了该思想的特色。  相似文献   

6.
The main purpose of this work is to present two semi-analytical solutions for the von Mises elastoplasticity model governed by combined linear isotropic-kinematic hardening. The first solution (SOLε) corresponds to strain-driven problems with constant strain rate assumption, whereas the second one (SOLσ) is proposed for stress-driven problems using constant stress rate assumption. The formulas are derived within the small strain theory Besides the new analytical solutions, a new discretized integration scheme (AMε) based on the time-continuous SOLε is also presented and the corresponding algorithmically consistent tangent tensor is provided. A main advantage of the discretized stress updating algorithm is its accuracy; it renders the exact solution if constant strain rate is assumed during the strain increment, which is a commonly adopted assumption in the standard finite element calculations. The improved accuracy of the new method (AMε) compared with the well-known radial return method (RRM) is demonstrated by evaluating two simple examples characterized by generic nonlinear strain paths.  相似文献   

7.
A new finite element method for Nwogu's (O. Nwogu, ASCE J. Waterw., Port, Coast., Ocean Eng., 119 , 618–638 (1993)) one‐dimensional extended Boussinesq equations is presented using a linear element spatial discretisation method coupled with a sophisticated adaptive time integration package. The accuracy of the scheme is compared to that of an existing finite difference method (G. Wei and J.T. Kirby, ASCE J. Waterw., Port, Coast., Ocean Eng., 121 , 251–261 (1995)) by considering the truncation error at a node. Numerical tests with solitary and regular waves propagating in variable depth environments are compared with theoretical and experimental data. The accuracy of the results confirms the analytical prediction and shows that the new approach competes well with existing finite difference methods. The finite element formulation is shown to enable the method to be extended to irregular meshes in one dimension and has the potential to allow for extension to the important practical case of unstructured triangular meshes in two dimensions. This latter case is discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
A new numerical method for Nwogu's (ASCE Journal of Waterway, Port, Coastal and Ocean Engineering 1993; 119 :618)two‐dimensional extended Boussinesq equations is presented using a linear triangular finite element spatial discretization coupled with a sophisticated adaptive time integration package. The authors have previously presented a finite element method for the one‐dimensional form of these equations (M. Walkley and M. Berzins (International Journal for Numerical Methods in Fluids 1999; 29 (2):143)) and this paper describes the extension of these ideas to the two‐dimensional equations and the application of the method to complex geometries using unstructured triangular grids. Computational results are presented for two standard test problems and a realistic harbour model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The paper illustrates the application of a general two-step integration scheme for the rate plasticity equations to the case of Drucker-Prager's model with linear mixed hardening and associated flow rule. The integration scheme coincides, for the case of the Mises equations, with a tangent predictor-radial return method with automatic sub-incrementation, the sub-increment size being governed by a predefined tolerance on the value of the yield stress. However, in contrast with the integration methods commonly adopted in several codes, the return step is here based on a precisely formulated rate problem, and it is not necessarily a radial one, in general. Thus, the accuracy characteristics of the method should carry over to every constitutive model tackled, depending only on the choice of the tolerance parameter value. The application of the integration scheme to Drucker-Prager's equations shows that the accuracy is in fact comparable to that obtained in the Mises case, for similar values of the tolerance parameter; at the same time some peculiarities of Drucker-Prager's yield condition, most notably the presence of a singular point in the stress space, highlight the flexibility and generality of the proposed method. Its theoretical basis, in fact, holds for vector-valued yield functions, thus automatically incorporating the treatment of the cases in which the stress points reach a corner in the yield surface.
Sommario Il lavoro illustra l'applicazione di uno schema di integrazione a due passi delle equazioni della plasticità incrementale al caso del modello di Drucker-Prager con incrudimento lineare misto e legge di scorrimento associata. Lo schema di integrazione si riduce, per il modello di Von Mises, a un metodo tangent predictor-radial return con subincrementazione automatica. L'ampiezza dei subincrementi è governata da una tolleranza prefissata sul valore dello sforzo di snervamento. A differenza dei metodi di integrazione comunemente impiegati in diversi codici di calcolo, il passo di ritorno qui è basato su un problema incrementale ben formulato, e non è necessariamente un passo radiale, in generale. In questo modo le caratteristiche di accuratezza del metodo non dovrebbero dipendere dalla legge costitutiva adottata, ma solo dal valore scelto della tolleranza. In effetti, l'applicazione del metodo alle equazioni di Drucker-Prager mostra che l'accuratezza ottenibile è paragonabile a quella ottenuta per il caso di Von Mises. Allo stesso tempo alcune caratteristiche della condizione di Drucker-Prager, in particolare la presenza di un punto singolare nello spazio degli sforzi, evidenziano la flessibilità e la generalità di applicazione del metodo studiato. Esso infatti ha basi teoriche valide anche per superfici di snervamento vettoriali, che incorporano perciò automaticamente il trattamento dei casi in cui lo sforzo si trova in punti angolosi.
  相似文献   

10.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

11.
In this paper, the steady crack growth of mode III under small scale yielding conditions is investigated for anisotropic hardening materials by the finite element method. The elastic-plastic stiffness matrix for anisotropic materials is given. The results show the significant influences of anisotropic hardening behaviour on the shape and size of plastic zone and deformation field near the crack tip. With a COD fracture criterion, the ratio of stress intensity factorsk ss/kc varies appreciably with the anisotropic hardening parameterM and the hardening exponentN.  相似文献   

12.
Now that almost 60 years have passed since the pioneering works of J.G. Oldroyd it seems appropriate as an homage to consider here constitutive equations that can be viewed as generalisations of the by now classical Oldroyd-B model. In this short communication we shall address heuristically the theme of differential constitutive models and will provide an alternative way of deriving a “modified FENE” equation (FENE-M) and inter-relating the PTT and FENE-P-like models.  相似文献   

13.
I.IntroductionTilepl'ogl'ess11as.toifcertainextent,beenmadeintheelastic-plasticconstitutivetheoryatII[litedefbrlllations.Coil'paredwitllotherconstitutiverelations,thegeneralizedPrandtlReuss(P-R)equatiollsareextensivelystudiedandwidelyapplied.IndevelopingthegeneralizedP-Requation.itisusuallyassumedthatthedeformationrate(thesymmetricpartorvelocitygradiellt)isdecolllposedintotheelasticpartandplasticpart.TheplasticLIcf\'l.llliltlollrittcobeystilenormalfi(,xvrilleasillthecaseofinfinitcsilllnld…  相似文献   

14.
A method is proposed for constructing a system of constitutive equations of an incompressible medium with nonlinear dissipative properties with finite deformations. A scheme of the mechanical behavior of a material is used, in which the points are connected by horizontally aligned elastic, viscous, plastic, and transmission elements. The properties of each element of the scheme are described with the use of known equations of the nonlinear elasticity theory, the theory of nonlinear viscous fluids, and the theory of plastic flow of the material under conditions of finite deformations of the medium. The system of constitutive equations is closed by equations that express the relation between the deformation rate tensor of the material and the deformation rate tensor of the plastic element. Transmission elements are used to take into account a significant difference between macroscopic deformations of the material and deformations of elements of the medium at the structural level. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 158–170, May–June, 2009.  相似文献   

15.
Thermodynamic and statistical methods for setting up the constitutive equations describing the viscoelastoplastic deformation and hardening of materials are proposed. The thermodynamic method is based on the law of conservation of energy, the equations of entropy balance and entropy production in the presence of self-balanced internal microstresses characterized by conjugate hardening parameters. The general constitutive equations include the relationships between the thermodynamic flows and forces, which follow from nonnegative entropy production and satisfy the generalized Onsager’s principle, and the thermoelastic relations and the expression for entropy, which follow from the law of conservation of energy. Specific constitutive equations are derived by representing the dissipation rate as a sum of two terms responsible for kinematic and isotropic hardening and approximated by power and hyperbolic-sinus functions. The constitutive equations describing viscoelastoplastic deformation and hardening are derived based on stochastic microstructural concepts and on the linear thermoelasticity model and nonlinear Maxwell model for the spherical and deviatoric components of microstresses and microstrains, respectively. The problem of determining the effective properties and stress-strain state of a three-component material found using the Voigt-Reuss scheme leads to constitutive equations similar in form to those produced by the thermodynamic method __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 3–18, February 2008.  相似文献   

16.
Sheet metal forming processes generally involve non-proportional strain paths including springback, leading to the Bauschinger effect, transient hardening, and permanent softening behavior, that can be possibly modeled by kinematic hardening laws. In this work, a stress integration procedure based on the backward-Euler method was newly derived for a nonlinear combined isotropic/kinematic hardening model based on the two-yield’s surfaces approach. The backward-Euler method can be combined with general non-quadratic anisotropic yield functions and thus it can predict accurately the behavior of aluminum alloy sheets for sheet metal forming processes. In order to characterize the material coefficients, including the Bauschinger ratio for the kinematic hardening model, one element tension–compression simulations were newly tried based on a polycrystal plasticity approach, which compensates extensive tension and compression experiments. The developed model was applied for a springback prediction of the NUMISHEET’93 2D draw bend benchmark example.  相似文献   

17.
Residual stress is the stress present in the unloaded equilibrium configuration of a body. Because residual stresses can significantly affect the mechanical behavior of a component, the measurement of these stresses and the prediction of their effect on mechanical behavior are important objectives in many engineering problems. Common methods for the measurement of residual stresses include various destructive experiments in which the body is cut to relieve the residual stress. The resulting strain is measured and used to approximate the original residual stress in the intact body. In order to predict the mechanical behavior of a residually stressed body, a constitutive model is required that includes the influence of the residual stress.In this paper we present a method by which the data obtained from standard destructive experiments can be used to derive constitutive equations that describe the mechanical behavior of elastic residually stressed bodies. The derivation is based on the idea that for each infinitesimal neighborhood in a residually stressed body, there exists a corresponding stress free configuration. We refer to this stress free configuration as the virtual configuration of the infinitesimal neighborhood. The derivation requires that the constitutive equation for the stress free material be known and invertible; it is used to relate the residual stress to the deformation of the virtual configuration into the residually stressed configuration. Although the concept of the virtual configuration is central to the derivation, the geometry of this configuration need not be determined explicitly, and it need not be achievable experimentally, in order to construct the constitutive equation for the residually stressed body.The general mathematical forms of constitutive equations valid for residually stressed elastic materials have been derived previously for a number of cases. These general forms contain numerous unknown material-response functions or material constants that must be determined experimentally. In contrast, the method presented here results in a constitutive equation that is an explicit function of residual stress and includes only the material parameters required to describe the stress free material.After presenting the method for the derivation of constitutive equations, we explore the relationship between destructive experiments and the theory used in the derivation. Specifically, we discuss the use of the theory to improve the design of destructive experiments, and the use of destructive experiments to obtain the data required to construct the constitutive equation for a particular material.  相似文献   

18.
(何宗彦)ELASTIC-PLASTICCONSTITUTIVEMODELSBASEDONTHEMULTIPLICATIONPROCESSESOFDEFORMEDGRAINS¥HeZongyan(DepartmentofEngineerMechani...  相似文献   

19.
20.
幂律全塑性罚函数随机有限元   总被引:2,自引:0,他引:2  
用罚函数有限元方法解决平面应变下的体积下可压缩问题,应用摄动有限元理论发展幂律全塑性随机有限元,并以弹性模是E,泊松比u和节点坐标等的基本随机变量,推导有限元列式,给出单板受拉,梁受弯的算例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号