首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CH+H_2→CH_3的MCSCF和VTST研究   总被引:1,自引:0,他引:1  
用福井的内禀反应坐标理论和MCSCF/6-31G方法计算了CH+H_2→CH_3的反应途径。在此基础上,计算了沿反应途径的动态学行为和变分过渡态理论(VTST)的速率常数(包括CVT,ICVT,/VT和US方法)。结果表明,反应的返回效应不大;但反应途径的曲率效应较大,它对速率常数影响较大,理论研究必须考虑这一因素。  相似文献   

2.
MCSCFANDVTSTSTUDIESOFTHEREACTIONCH(2~π)+H_2→CH_3¥SiYuMAandRuoZhuangLin(DepartmentofChemised.BeijingformalUniversity,Beijing100?..  相似文献   

3.
The reaction path, the dynamical properties along the reaction path and CVT rate constants are computed by the ab initio MO method, the reaction path Hamiltonian theory and the variational transition state theory. The results show that the effect of the electron correlation energy on activation barrier is large, the recrossing and tunneling effects exist in the reaction.  相似文献   

4.
The reaction path of the reaction NCO+H2→HNCO + H has been traced by Fukui's theory and the ab initio method. On this basis, the dynamical properties along the reaction path, canonical variational theory (CVT) rate constants and vibrational-mode-selected rate constants have been computed. The results show that the effect of the electron correlation energy on the activation barrier is large, and tiros the correction by MP4 method is effective; the results also show that the recrossing and tunneling effects exist, and thus the corrections by the variational transition state theory (VTST) and the small curvature (SC) approximation method are also effective. In the reaction, the coupling and energy transfer between mode 8(7) and reaction path are strong, so the rate is effectively enhanced while these modes, especially H2 stretching, are vibrationally excited.  相似文献   

5.
6.
《Chemical physics letters》1986,123(4):331-336
The potential energy surface for the CH4+CH4+ reaction system has been calculated with the ab initio method. A stable complex, responsible for the complex mechanism, has been found but is hard to reach. Each of the two direct mechanisms, hydrogen transfer and proton transfer, has been shown to consist of a combination of electron transfer and hydrogen atom transfer processes.  相似文献   

7.
The potential energy surfaces of the CF(3)CH═CH(2) + OH reaction have been investigated at the BMC-CCSD level based on the geometric parameters optimized at the MP2/6-311++G(d,p) level. Various possible H (or F)-abstraction and addition/elimination pathways are considered. Temperature- and pressure-dependent rate constants have been determined using Rice-Ramsperger-Kassel-Marcus theory with tunneling correction. It is shown that IM1 (CF(3)CHCH(2)OH) and IM2 (CF(3)CHOHCH(2)) formed by collisional stabilization are major products at 100 Torr pressure of Ar and in the temperature range of T < 700 K (at P = 700 Torr with N(2) as bath gas, T ≤ 900 K), whereas CH(2)═CHOH and CF(3) produced by the addition/elimination pathway are the dominant end products at 700-2000 K. The production of CF(3)CHCH and CF(3)CCH(2) produced by hydrogen abstractions become important at T ≥ 2000 K. The calculated results are in good agreement with available experimental data. The present theoretical study is helpful for the understanding the characteristics of the reaction of CF(3)CH═CH(2) + OH.  相似文献   

8.
We present an on-the-fly classical trajectory study of the Cl + CH(4)→ HCl + CH(3) reaction using a specific reaction parameter (SRP) AM1 Hamiltonian that was previously optimized for the Cl + ethane reaction [S. J. Greaves et al., J. Phys Chem A, 2008, 112, 9387]. The SRP-AM1 Hamiltonian is shown to be a good model for the potential energy surface of the title reaction. Calculated differential cross sections, obtained from trajectories propagated with the SRP-AM1 Hamiltonian compare favourably with experimental results for this system. Analysis of the vibrational modes of the methyl radical shows different scattering distributions for ground and vibrationally excited products.  相似文献   

9.
Carbenoidsandcompoundswithcarbenoidnatureareofspecialinterestsynthetically.ThesecompoundsreactnotonlywithelectrophilesE(asall“carbanions”do),butalsowithnucleophileslikeRLi.Theambidentnatureofcarbenoidshasledtomanyinvestigationsoftheirstructuresandisome…  相似文献   

10.
The O((3)P) + CH(4) reaction has been investigated using the quasi-classical trajectory (QCT) method and an ab initio pseudotriatomic potential energy surface (PES). This has been mainly motivated by very recent experiments which support the reliability of the triatomic modeling even at high collision energy ( = 64 kcal mol(-1)). The QCT results agree rather well with the experiments (translational and angular distributions of products); i.e., the ab initio pseudotriatomic modeling "captures" the essence of the reaction dynamics, although the PES was not optimized for high E(col). Furthermore, similar experiments on the O((3)P) + CD(4) reaction at moderate E(col) (12.49 kcal mol(-1)) have also been of a large interest here and, under these softer reaction conditions, the QCT method leads to results which are almost in quantitative agreement with experiments. The utility of the ab initio pseudotriatomic modeling has also been recognized for other analogous systems (X + CH(4)) but with very different PESs.  相似文献   

11.
A new full-dimensional potential energy surface for the title reaction has been constructed using the modified Shepard interpolation scheme. Energies and derivatives were calculated using the UCCSD(T) method with aug-cc-pVTZ and 6-311++G(3df,2pd) basis sets, respectively. A total number of 30,000 data points were selected from a huge number of molecular configurations sampled by trajectory method. Quantum dynamical calculations showed that the potential energy surface is well converged for the number of data points for collision energy up to 2.5 eV. Total reaction probabilities and integral cross sections were calculated on the present surface, as well as on the ZBB3 and EG-2008 surfaces for the title reaction. Satisfactory agreements were achieved between the present and the ZBB3 potential energy surfaces, indicating we are approaching the final stage to obtain a global potential energy surface of quantitative accuracy for this benchmark polyatomic system. Our calculations also showed that the EG-2008 surface is less accurate than the present and ZBB3 surfaces, particularly in high energy region.  相似文献   

12.
The H-atom abstraction reaction, O((3)P) + CH(4) → OH + CH(3), has been studied at a hyperthermal collision energy of 64 kcal mol(-1) by two crossed-molecular-beams techniques. The OH products were detected with a rotatable mass spectrometer employing electron-impact ionization, and the CH(3) products were detected with the combination of resonance-enhanced multiphoton ionization (REMPI) and time-sliced ion velocity-map imaging. The OH products are mainly formed through a stripping mechanism, in which the reagent O atom approaches the CH(4) molecule at large impact parameters and the OH product is scattered in the forward direction: roughly the same direction as the reagent O atoms. Most of the available energy is partitioned into product translation. The dominance of the stripping mechanism is a unique feature of such H-atom abstraction reactions at hyperthermal collision energies. In the hyperthermal reaction of O((3)P) with CH(4), the H-atom abstraction reaction pathway accounts for 70% of the reactive collisions, while the H-atom elimination pathway to produce OCH(3) + H accounts for the other 30%.  相似文献   

13.
AbInitioStudyontheReactionofLa++CH4→La+-CH2+H2RongShunZHU;ShuShanDAI(DepartmentofChemistry,YunnanUniversity,Kunming650091)Abs...  相似文献   

14.
采用直接动力学方法,对乙腈与甲基的反应进行了理论研究.在BHandHLYP/6-311G(d,p)和MP2/6-311G(d,p)水平下获得,稳定点的几何结构、振动频率及最小能量路径(MEP),在G3(MP2)和MC-QCISD水平下对能量信息进一步确认.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应在220K~2000K的速率常数,与实验值符合得很好.  相似文献   

15.
The mode selectivity of the H+CH3D→H2+CH2D reaction was studied using a recently developed ten-dimensional time-dependent wave packet method.The reac-tion dynam...  相似文献   

16.
《Chemical physics letters》1986,126(2):149-152
The flash photolysis-visible absorption technique has been used to measure rate constants for the reaction NO + NO3 → 2NO2 (1) over the temperature range 224–328 K. The temperature dependence of the rate constant is given by the expression k1(T) = (1.59 ± 0.32) × 10−11exp(122/T) cm3 molecule−1 s−1 where the stated uncertainties refer to the ± 2σ limits from both random and systematic errors.  相似文献   

17.
In a recent paper, we have developed an efficient implementation of the ring polymer molecular dynamics (RPMD) method for calculating bimolecular chemical reaction rates in the gas phase, and illustrated it with applications to some benchmark atom-diatom reactions. In this paper, we show that the same methodology can readily be used to treat more complex polyatomic reactions in their full dimensionality, such as the hydrogen abstraction reaction from methane, H + CH(4) → H(2) + CH(3). The present calculations were carried out using a modified and recalibrated version of the Jordan-Gilbert potential energy surface. The thermal rate coefficients obtained between 200 and 2000 K are presented and compared with previous results for the same potential energy surface. Throughout the temperature range that is available for comparison, the RPMD approximation gives better agreement with accurate quantum mechanical (multiconfigurational time-dependent Hartree) calculations than do either the centroid density version of quantum transition state theory (QTST) or the quantum instanton (QI) model. The RPMD rate coefficients are within a factor of 2 of the exact quantum mechanical rate coefficients at temperatures in the deep tunneling regime. These results indicate that our previous assessment of the accuracy of the RPMD approximation for atom-diatom reactions remains valid for more complex polyatomic reactions. They also suggest that the sensitivity of the QTST and QI rate coefficients to the choice of the transition state dividing surface becomes more of an issue as the dimensionality of the reaction increases.  相似文献   

18.
Thermochemistry and kinetic pathways on the 2-butanone-4-yl (CH3C(=O)CH2CH2•) + O2 reaction system are determined. Standard enthalpies, entropies, and heat capacities are evaluated using the G3MP2B3, G3, G3MP3, CBS-QB3 ab initio methods, and the B3LYP/6-311g(d,p) density functional calculation method. The CH3C(=O)CH2CH2• radical + O2 association reaction forms a chemically activated peroxy radical with 35 kcal mol−1 excess of energy. The chemically activated adduct can undergo RO−O bond dissociation, rearrangement via intramolecular hydrogen transfer reactions to form hydroperoxide-alkyl radicals, or eliminate HO2 and OH. The hydroperoxide-alkyl radical intermediates can undergo further reactions forming ketones, cyclic ethers, OH radicals, ketene, formaldehyde, or oxiranes. A relatively new path showing a low barrier and resulting in reactive product sets involves peroxy radical attack on a carbonyl carbon atom in a cyclic transition state structure. It is shown to be important in ketones when the cyclic transition state has five or more central atoms.  相似文献   

19.
Direct Dynamics Study on CH_2O + CH_3~·→ CHO + CH_4 Reaction   总被引:1,自引:0,他引:1  
It is still a formidable challenge to study CH2O CH3·→ CHO CH4 reaction in the gas phase by traditional dynamics, because of the large number of freedom degrees for the system. In this paper, direct dynamics, in which trajectories were run directly on the DFT potential energy surface, have been applied to the reaction, which gave a direct look in the reaction processes. Two sets of trajectories at different initial orientations of reactants and temperature have been simulated. And the detailed reaction mechanisms have been described.  相似文献   

20.
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号