首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
A system of equations for averaged velocity of turbulent motion of ideal fluid is derived from the assumption that this motion is ergodic. Several fluid flows are considered. A remarkable feature of the averaged equations is that in some cases they have a form of an eigenvalue problem similar to that for Schrődinger’s equation. The equations derived suggest that there are no universal equations for averaged velocity of turbulent flows.   相似文献   

3.
We consider here the problem of deriving rigorously from renormalized solutions of Boltzmann's equation, globally in time, for general initial conditions and without any additional assumption, solutions of Stokes' equations (together with the strong Boussinesq relation). We also obtain similar results for Euler equations where, however, we need to make an assumption on the high velocities of the solutions of Boltzmann's equation.  相似文献   

4.
In an experimental study of the heat transfer from a partially ionized gas it was found that the heat flux to the wall for flow of an electrically conducting gas in a circular tube located in a magnetic field of a solenoid depends not only on the magnitude of the magnetic field but also on the field orientation [1]; with the magnetic field parallel to the velocity the heat transfer is reduced by 15%, with antiparallel orientation it is reduced by only 1% in comparison with the heat transfer without the magnetic field. No explanation for this was given either in [1] or in the subsequent discussion [2]; moreover, on the basis of the constructed equations [1] this effect cannot be obtained at all, since the solution of the equations clearly is not changed by a change of the field sign. In the following we attempt to explain this effect by the processes which take place during the development of rotational flow of an anisotropically conducting medium. The idea of the possibility of such an explanation for this effect was proposed in general form in the survey paper [3].The detailed calculation of the development of MHD flows has been made previously only for the case of a transverse magnetic field and very simple channel geometry (see, for example, the survey [3]).In all the considered problems the components of the electrical field which appeared in the motion equations were known with an accuracy to constants from symmetry considerations. Therefore, under the assumption of smallness of the induced magnetic field these problems reduced simply to the solution of the equation of motion with additional terms which are linear in the velocity. In the present paper we construct an approximate simultaneous solution of a system consisting of the motion equations and the equation for the electrical potential.  相似文献   

5.
We consider here the problem of deriving rigorously from Boltzmann's equation, globally in time and for general initial conditions, fluid mechanics equations such as the Navier-Stokes or Euler equations.  相似文献   

6.
7.
A study is made of the linear stability of plane-parallel unsteady flows of a viscous incompressible fluid: in the mixing layer of two flows, in a jet with constant flow rate, and near a wall suddenly set in motion [1]. The slow variation of these flows in time compared with the rate of change of the perturbations makes it possible to use the method of two-scale expansions [2]. The stability of nonparallel flows with allowance for their slow variation with respect to the longitudinal coordinate was investigated, for example, in [3–6]. The unsteady flows considered in the present paper have a number of characteristic properties of non-parallel flows [1], but in contrast to them are described by exact solutions of the Navier-Stokes equations. In addition, for unsteady planeparallel flows a criterion of neutral stability can be uniquely established by means of the energy balance equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, 138–142, July–August, 1981.I thank G. I. Petrov for suggesting the problem, and also S. Ya. Gertsenshtein and A. V. Latyshev for assisting in the work.  相似文献   

8.
The pressure fluctuations in turbulent shear flows are investigated with the theory of spectral analysis.An expression for pressure spectra is analytically derived in terms of velocity spectra.This derivation is based on a formal solution of the Navier-Stokes equation and quasi-normal assumption to express the third and fourth order velocity correlations in terms of double velocity correlation.Then,a turbulent model for the computation of pressure fluctuation intensity with Renolds stress and mean flow velocity gradients is established.The turbulent constants in the model are calculated from the assumptions about the general behaviour of velocity spectra in high Renolds number flows.Comparison with direct simulation of turbulent boundary layer is made.It is found that the turbulent-turbulent,cross correlation,and turbulent-shear source terms for mean square value of pressure fluctuation are about the same magnitude.  相似文献   

9.
An examination is made of the two-dimensional, almost stationary flow of an ideal gas with small but clear variations in its parameters. Such gas motion is described by a system of two quasilinear equations of mixed type for the radial and tangential velocity components [1, 2]. Partial solutions [3, 4], characterizing the variation in the gas parameters in the vicinity of the shock wave front (in the short-wave region), are known for this system of equations. The motion of the initial discontinuity of the short waves derived from the velocity components with respect to polar angle and their damping are studied in the report. A solution of the equations characterizing the arrangement of the initial discontinuity derived from the velocities is presented for one particular case of the class of exact solutions of the two parameter type [4]. Functions are obtained which express the nature of the variation in velocity of the front of the damped wave and its curvature.Translation from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 55–58, May–June, 1973.  相似文献   

10.
11.
In contrast with conventional gasdynamics, in magnetogasdynamics there are several types of mixed flows. A detailed study of such plane flows was first made by Kogan [1]. After this, intensive work was done on the magnetogasdynamic mixed flows [2–13], with the plane case being considered in all the studies except [9]. In [9] the equations of the possible mixed flows for the axisymmetric case were obtained in terms of the disturbance velocity components.The axisymmetric mixed flows are studied in detail in the present paper. The exact equations of motion are obtained for the velocity potential and the streamfunction, and the corresponding approximate equations are obtained for all the transitional regimes (transonic, hypercritical, trans-Alfvenic, transonic-trans-Alfvenic). Simple particular solutions are obtained for these approximate equations.For greater generality the entire study is made simultaneously for the plane and axisymmetric cases.The author wishes to thank S. V. Fal'kovich for his interest in the study and for valuable discussions.  相似文献   

12.
One-dimensional unsteady flows of a combustible gas mixture with account for the finite chemical-reaction rate were studied in [1]. The conditions for self-similarity of such flows were indicated, mathematical formulation of the problem was given, and several numerical calculations were carried out.The authors pointed out the necessity for conducting additional studies, since they were not able to obtain numerically, by means of passages to the limit, self-sustaining detonation waves propagating with the Chapman-Jouguet (CJ) velocity.In this article we point out the reason why it was not possible to reach the CJ regime in [1], and a qualitative analysis is made, by means of the results of [2], of the system of equations describing the self-similar flows of a gas with finite chemical-reaction rate, and the passage to the limit is made to the self-sustaining CJ detonation waves in the presence of chemical reactions. It is also shown that the problem of unsteady flows of a combustible mixture of gases with finite chemical-reaction rate is analogous to the problem of the flow of a gas heated by radiation, examined in [3].In conclusion the authors wish to thank I. V. Nemchinov and A. G. Kulikovskii for discussions of this study.  相似文献   

13.
The classical shallow-water equations describing the propagation of long waves in flow without a shear of the horizontal velocity along the vertical coincide with the equations describing the isentropic motion of a polytropic gas for a polytropic exponent γ = 2 (in the theory of fluid wave motion, this fact is called the gas-dynamic analogy). A new mathematical model of long-wave theory is derived that describes shear free-boundary fluid flows. It is shown that in the case of one-dimensional motion, the equations of the new model coincide with the equations describing nonisentropic gas motion with a special choice of the equation of state, and in the multidimensional case, the new system of long-wave equations differs significantly from the gas motion model. In the general case, it is established that the system of equations derived is a hyperbolic system. The velocities of propagation of wave perturbations are found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 8–15, May–June, 2007.  相似文献   

14.
15.
A numerical method has been developed to solve the steady and unsteady incompressible Navier-Stokes equations in a two-dimensional, curvilinear coordinate system. The solution procedure is based on the method of artificial compressibility and uses a third-order flux-difference splitting upwind differencing scheme for convective terms and second-order center difference for viscous terms. A time-accurate scheme for unsteady incompressible flows is achieved by using an implicit real time discretization and a dual-time approach, which introduces pseudo-unsteady terms into both the mass conservation equation and momentum equations. An efficient fully implicit algorithm LU-SGS, which was originally derived for the compressible Eulur and Navier-Stokes equations by Jameson and Toon [1], is developed for the pseudo-compressibility formulation of the two dimensional incompressible Navier-Stokes equations for both steady and unsteady flows. A variety of computed results are presented to validate the present scheme. Numerical solutions for steady flow in a square lid-driven cavity and over a backward facing step and for unsteady flow in a square driven cavity with an oscillating lid and in a circular tube with a smooth expansion are respectively presented and compared with experimental data or other numerical results.  相似文献   

16.
The Navier-Stokes equations are used in a numerical study of the two-dimensional motions of a compressible gas in a closed rectangular region in a gravity field. The motion of the gas is due to the propagation of a temperature discontinuity along the lower boundary of the region. The mechanism of formation of eddy structures is followed in detail for different velocities of the discontinuity and different ratios of the sides of the region. The method of stabilization is used to obtain different stationary solutions to the problem of convection in a rectangular region heated below. The realization of a particular stationary solution depends on the history of the process. Problems of the convective motion of liquids and gases in closed regions heated below, including questions relating to the nonuniqueness of stationary solutions, are considered in the monograph [1] and the review [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 87–92, September–October, 1980.We thank V. B. Librovich, L. A. Chudov, and G. M. Makhviladze for guidance and helpful discussions.  相似文献   

17.
18.
In recent years, some new phenomena have been predicted theoretically on the basis of the Burnett approximation. These include thermal-stress and concentration-stress convection [1–3], and also effects due to the influence of a magnetic field in a multiatomic gas (viscomagnetic heat flux, etc., [4]). It has been shown theoretically (see [5]) that under certain conditions various terms of the Burnett approximation must be taken into account in the expression for barodiffusion. The conclusions relating to a viscomagnetic heat flux have recently been confirmed experimentally [4]. The predicted phenomena follow rigorously from the Burnett equations. However, many hydrodynamicists adopt a sceptical attitude to these equations, which is due partly perhaps to attachment to the classical Navier-Stokes equations, which have served theoreticians without fail for a century and a half. In this connection, we discuss the evolution of ideas relating to the validity of the Burnett approximation. We discuss the minimal assumptions which must be made in order to derive the equations of slow [Reynolds number R = 0(1)], essentially nonisothermal [ ln T = 0(1)] flows of a gas as a continuous medium (Knudsen number K O) in the case when the derivatives of the thermal Burnett stresses in the momentum equation have the same order of magnitude as the Euler and Navier-Stokes terms of this equation [1–3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 77–84, November–December, 1979.We thank G. I. Petrov and L. I. Sedov for discussions that stimulated the above analysis.  相似文献   

19.
Thermocapillary convection in a plane horizontal fluid layer with concentrated heating of the free surface is modeled numerically using the Navier-Stokes equations and the heat transport equation. This makes it possible to examine the structure of the convection throughout the fluid volume, in particular in the region where the motion is weak. The deformation of the free surface is assumed to be negligibly small. In the case of a ponderable fluid this assumption is justified given certain upper and lower constraints on the temperature difference and the thickness of the layer, respectively, [9, 10]. Under conditions of weightlessness a fluid layer of constant thickness in a rectangular channel can be realized at a contact angle of 90° [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 108–113, July–August, 1987.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号