首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, UV-vis spectra, and electrochemical behavior of the nitrile-bonded trans-[Ru(II)Cl(cyclam)(4-NCpyH(+))](BF(4))(2) (4-Ncpy = 4-cyanopyridine; cyclam = 1,4,8,11-tetraazacyclotetradecane) and of trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH(+))](2+) are described. The UV-vis spectrum of the Ru(II) nitrile complex shows a MLCT band at 548 nm at pH 1, which is shifted to 440 nm at pH approximately 6, for the unprotonated species. trans-[Ru(II)Cl(cyclam)(4-NCpyH(+))](2+) was electrolytically oxidized (+600 mV vs Ag/AgCl) at pH 1 to Ru(III), followed by hydrolysis (k = 0.25 s(-1)) of the coordinated nitrile to give trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH(+))](2+), in which the amide is deprotonated and coordinated through nitrogen. The identity of the species is pH dependent, the nitrogen-bonded amide prevailing at low pH (< 7), but the oxygen-bonded amide is formed through linkage isomerization at higher pH (>8). Reduction of trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH)](2+) in acidic media does not result in fast aquation (k = approximately 2.4 x 10(-5) s(-1)) as for other amides on ruthenium(II) pentaammine, but instead linkage isomerization occurs, resulting in the oxygen-bonded species, with an estimated rate constant of approximately 2 x 10(-2) s(-1), smaller than in the pentaammine analogues.  相似文献   

2.
Silica gel bearing isonicotinamide groups was prepared by further modification of 3-aminopropyl-functionalized silica by a reaction with isonicotinic acid and 1,3-dicyclohexylcarbodiimide to yield 3-isonicotinamidepropyl-functionalized silica gel (ISNPS). This support was characterized by means of infrared spectroscopy, elemental analysis, and specific surface area. The ISNPS was used to immobilize the [Ru(NH(3))(4)SO(3)] moiety by reaction with trans-[Ru(NH(3))(4)(SO(2))Cl]Cl, yielding [Si(CH(2))(3)(isn)Ru(NH(3))(4)(SO(3))]. The related immobilized [Si(CH(2))(3)(isn)Ru(NH(3))(4)(L)](3+/2+) (L=SO(2), SO(2-)(4), OH(2), and NO) complexes were prepared and characterized by means of UV-vis and IR spectroscopy, as well as by cyclic voltammetry. Syntheses of the nitrosyl complex were performed by reaction of the immobilized ruthenium ammine [Si(CH(2))(3)(isn)Ru(NH(3))(4)(OH(2))](2+) with nitrite in acid or neutral (pH 7.4) solution. The similar results obtained in both ways indicate that the aqua complex was able to convert nitrite into coordinated nitrosyl. The reactivity of [Si(CH(2))(3)(isn)Ru(NH(3))(4)(NO)](3+) was investigated in order to evaluate the nitric oxide (NO) release. It was found that, upon light irradiation or chemical reduction, the immobilized nitrosyl complex was able to release NO, generating the corresponding Ru(III) or Ru(II) aqua complexes, respectively. The NO material could be regenerated from these NO-depleted materials obtained photochemically or by reduction. Regeneration was done by reaction with nitrite in aqueous solution (pH 7.4). Reduction-regeneration cycles were performed up to three times with no significant leaching of the ruthenium complex.  相似文献   

3.
[Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.  相似文献   

4.
The synthesis of trans-[RuCl(NO)(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) can be accomplished by either the addition of cyclam to K2[RuCl5NO] or by the addition of NO to trans-[RuCl(CF3SO3)(cyclam)](CF3-SO3). Crystals of trans-[RuCl(NO)(cyclam)](ClO4)2 form in the monoclinic space group P2(1)/c, with unit cell parameters of a = 7.66500(2) A, b = 24.7244(1) A, c = 16.2871(2) A, beta = 95.2550(10) degrees, and Z = 4. One of the two independent molecules in the unit cell lies disordered on a center of symmetry. For the ion in the general position, the Ru-N and N-O bond distances and the [Ru-N-O]3+ bond angle are 1.747(4) A, 1.128(5) A, 178.0(4) degrees, respectively. In both ions, cyclam adopts the (R,R,S,S) configuration, which is also consistent with 2D COSY 1H NMR studies in aqueous solution. Reduction (E degree = -0.1 V) results in the rapid loss of Cl- by first-order kinetics with k = 1.5 s-1 and the slower loss of NO (k = 6.10 x 10(-4) s-1, delta H++ = 15.3 kcal mol-1, delta S++ = -21.8 cal mol-1 K-1). The slow release of NO following reduction causes trans-[RuCl(NO)(cyclam)]2+ to be a promising controlled-release NO prodrug for vasodilation and other purposes. Unlike the related complex trans-[Ru(NO)(NH3)4(P(OEt)3)](PF6)2, trans-[RuCl(NO)(cyclam)]Cl2 is inactive in modulating evoked potentials recorded from mice hippocampal slices probably because of the slower dissociation of NO following reduction.  相似文献   

5.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

6.
In this paper, the synthesis, structural and spectroscopic characterization of a series of new Ru(III)-nitrosyls of {RuNO}(6) type with the coligand TPA (tris(2-pyridylmethyl)amine) are presented. The complex [Ru(TPA)Cl(2)(NO)]ClO(4) (2) was prepared from the Ru(III) precursor [Ru(TPA)Cl(2)]ClO(4) (1) by simple reaction with NO gas. This led to the surprising displacement of one of the pyridine (py) arms of TPA by NO (instead of the substitution of a chloride anion by NO), as confirmed by X-ray crystallography. NO complexes where TPA serves as a tetradentate ligand were obtained by reacting the new Ru(II) precursor [Ru(TPA)(NO(2))(2)] (3) with a strong acid. This leads to the dehydration of nitrite to NO(+), and the formation of the {RuNO}(6) complex [Ru(TPA)(ONO)(NO)](PF(6))(2) (4), which was also structurally characterized. Derivatives of 4 where nitrite is replaced by urea (5) or water (6) were also obtained. The nitrosyl complexes obtained this way were then further investigated using IR and FT-Raman spectroscopy. Complex 2 with the two anionic chloride coligands shows the lowest N-O and highest Ru-NO stretching frequencies of 1903 and 619 cm(-1) of all the complexes investigated here. Complexes 5 and 6 where TPA serves as a tetradentate ligand show ν(N-O) at higher energy, 1930 and 1917 cm(-1), respectively, and ν(Ru-NO) at lower energy, 577 and 579 cm(-1), respectively, compared to 2. These vibrational energies, as well as the inverse correlation of ν(N-O) and ν(Ru-NO) observed along this series of complexes, again support the Ru(II)-NO(+) type electronic structure previously proposed for {RuNO}(6) complexes. Finally, we investigated the photolability of the Ru-NO bond upon irradiation with UV light to determine the quantum yields (φ) for NO photorelease in complexes 2, 4, 5, and additional water-soluble complexes [Ru(H(2)edta)(Cl)(NO)] (7) and [Ru(Hedta)(NO)] (8). Although {RuNO}(6) complexes are frequently proposed as NO delivery agents in vivo, studies that investigate how φ is affected by the solvent water are lacking. Our results indicate that neutral water is not a solvent that promotes the photodissociation of NO, which would present a major obstacle to the goal of designing {RuNO}(6) complexes as photolabile NO delivery agents in vivo.  相似文献   

7.
The complex framework [Ru(tpy)(dpk)]2+ has been used to study the generation and reactivity of the nitrosyl complex [Ru(tpy)(dpk)(NO)]3+ ([4]3+). Stepwise conversion of the chloro complex [Ru(tpy)(dpk)(Cl)]+ ([1]+) via [Ru(tpy)(dpk)(CH3CN)]2+ ([2]2+) and the nitro compound [Ru(tpy)(dpk)(NO2)]+ ([3]+) yielded [4]3+; all four complexes were structurally characterized as perchlorates. Electrochemical oxidation and reduction was investigated as a function of the monodentate ligand as was the IR and UV-vis spectroscopic response (absorption/emission). The kinetics of the conversion [4]3+/[3]+ in aqueous environment were also studied. Two-step reduction of [4]3+ was monitored via EPR, UV-vis, and IR (nu(NO), nu(CO)) spectroelectrochemistry to confirm the {RuNO}7 configuration of [4]2+ and to exhibit a relatively intense band at 505 nm for [4]+, attributed to a ligand-to-ligand transition originating from bound NO-.  相似文献   

8.
The electronic absorption spectrum of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in aqueous solution is characterized by a strong absorption band at 334 nm (lambda(max) = 1800 mol(-1) L cm(-1)). On the basis of quantum mechanics calculations, this band has been assigned to a MLCT transition from the metal to the nitro ligand. Molecular orbital calculations also predict an LF transition at 406 nm, which is obscured by the intense MLCT transition. When trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in acetonitrile is irradiated with a 355 nm pulsed laser light, the absorption features are gradually shifted to represent those of the solventocomplex trans-[Ru(NH(3))(4)(solv)(P(OEt)(3)](2+) (lambda(max) = 316 nm, epsilon = 650 mol(-1) L cm(-1)), which was also detected by (31)P NMR spectroscopy. The net photoreaction under these conditions is a photoaquation of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+), although, after photolysis, the presence of the nitric oxide was detected by differential pulse polarography. In phosphate buffer pH 9.0, after 15 min of photolysis, a thermal reaction resulted in the formation of a hydroxyl radical and a small amount of a paramagnetic species as detected by EPR spectroscopy. In the presence of trans-[Ru(NH(3))(4)(solv)P(OEt)(3)](2+), the hydroxyl radical initiated a chain reaction. On the basis of spectroscopic and electrochemical data, the role of the radicals produced is analyzed and a reaction sequence consistent with the experimental results is proposed. The 355 nm laser photolysis of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in phosphate buffer pH 7.4 also gives nitric oxide, which is readily trapped by ferrihemeproteins (myoglobin, hemoglobin, and cytochrome C), giving rise to the formation of their nitrosylhemeproteins(II), (NO)Fe(II)hem.  相似文献   

9.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

10.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

11.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

12.
The reaction of NO and the immobilized dimer complex (edta)(2)Ru(2)(III(1/2),III(1/2)) on silica gel chemically modified with [3-(2-aminoethyl)aminopropyl]trimethoxysilane (AEATS) produces the corresponding immobilized nitrosyl complex AEATS/Ru(II)NO(+). This compound, a monomer, was obtained by reducing the immobilized ruthenium dimer either electrochemically or with Eu(II) and reacting this species with NO(2)(-) ions. The properties of [Ru(edta)NO](-) in solution and anchored (AEATS/Ru(II)NO(+)) on silica were compared using electrochemical (DPV, CV) and spectroscopic (IR, UV-vis, and ESR) techniques. The results indicate that immobilization does not alter the reactivity of the ruthenium complex and confirm that [Ru(edta)(H(2)O)](2)(-) may be used, either in solution or immobilized, as a catalyst for the conversion of NO(2)(-) to NO(+). Both the anchored nitrosyl complex AEATS/Ru(II)NO(+) and the [Ru(edta)NO](-) species in solution, upon one-electron reduction, liberate NO at comparable rates.  相似文献   

13.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

14.
Ruthenium complexes bearing ethylbis(2-pyridylethyl)amine (ebpea), which has flexible -C(2)H(4)- arms between the amine and the pyridyl groups and coordinates to a metal center in facial and meridional modes, have been synthesized and characterized. Three trichloro complexes, fac-[Ru(III)Cl(3)(ebpea)] (fac-[1]), mer-[Ru(III)Cl(3)(ebpea)] (mer-[1]), and mer-[Ru(II)Cl(3){η(2)-N(C(2)H(5))(C(2)H(4)py)═CH-CH(2)py}] (mer-[2]), were synthesized using the Ru blue solution. Formation of mer-[2] proceeded via a C-H activation of the CH(2) group next to the amine nitrogen atom of the ethylene arm. Reduction reactions of fac- and mer-[1] afforded a triacetonitrile complex mer-[Ru(II)(CH(3)CN)(3)(ebpea)](PF(6))(2) (mer-[3](PF(6))(2)). Five nitrosyl complexes fac-[RuX(2)(NO)(ebpea)]PF(6) (X = Cl for fac-[4]PF(6); X = ONO(2) for fac-[5]PF(6)) and mer-[RuXY(NO)(ebpea)]PF(6) (X = Cl, Y = Cl for mer-[4]PF(6); X = Cl, Y = CH(3)O for mer-[6]PF(6); X = Cl, Y = OH for mer-[7]PF(6)) were synthesized and characterized by X-ray crystallography. A reaction of mer-[2] in H(2)O-C(2)H(5)OH at room temperature afforded mer-[1]. Oxidation of C(2)H(5)OH in H(2)O-C(2)H(5)OH and i-C(3)H(7)OH in H(2)O-i-C(3)H(7)OH to acetaldehyde and acetone by mer-[2] under stirring at room temperature occurred with formation of mer-[1]. Alternative C-H activation of the CH(2) group occurred next to the pyridyl group, and formation of a C-N bond between the CH moiety and the nitrosyl ligand afforded a nitroso complex [Ru(II)(N(3))(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([8]) in reactions of nitrosyl complexes with sodium azide in methanol, and reaction of [8] with hydrochloric acid afforded a corresponding chloronitroso complex [Ru(II)Cl(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([9]).  相似文献   

15.
A family of coordination complexes has been synthesized, each comprising a ruthenium(II) center ligated by a thiacrown macrocycle, [9]aneS(3), [12]aneS(4), or [14]aneS(4), and a pair of cis-coordinated ligands, niotinamide (nic), isonicotinamide (isonic), or p-cyanobenzamide (cbza), that provide the complexes with peripherally situated amide groups capable of hydrogen bond formation. The complexes [Ru([9]aneS(3))(nic)(2)Cl]PF(6), 1(PF(6)); [Ru([9]aneS(3)) (isonic)(2)Cl]PF(6), 2(PF(6)); [Ru([12]aneS(4))(nic)(2)](PF(6))(2), 3(PF(6))(2); [Ru([12]aneS(4))(isonic)(2)](PF(6))(2), 4(PF(6))(2); [Ru([12]aneS(4)) (cbza)(2)](PF(6))(2), 5(PF(6))(2); [Ru([14]aneS(4))(nic)(2)](PF(6))(2), 6(PF(6))(2); [Ru([14]aneS(4))(isonic)(2)](PF(6))(2), 7(PF(6))(2); and [Ru([14]aneS(4))(cbza)(2)](PF(6))(2), 8(PF(6))(2) have been characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV/visible spectroscopy shows that each complex exhibits an intense high-energy band (230-255 nm) assigned to a pi-pi* transition and a lower energy band (297-355 nm) assigned to metal-to-ligand charge-transfer transitions. Electrochemical studies indicate good reversibility for the oxidations of complexes with nic and isonic ligands (|I(a)/I(c)| = 1; DeltaEp < 100 mV), In contrast, complexes 5 and 8, which incorporate cbza ligands, display oxidations that are not fully electrochemically reversible (|I(a)/I(c)| = 1, DeltaEp > or = 100 mV). Metal-based oxidation couples between 1.32 and 1.93 V versus Ag/AgCl can be rationalized in term of the acceptor capabilities of the thiacrown ligands and the amide-bearing ligands, as well as the pi-donor capacity of the chloride ligands in compounds 1 and 2. The potential to use these electroactive metal complexes as building blocks for hydrogen-bonded crystalline materials has been explored. Crystal structures of compounds 1(PF(6)).H(2)O, 1(BF(4)).2H(2)O, 2(PF(6)), 3(PF(6))(2), 6(PF(6))(2)CH(3)NO(2), and 8(PF(6))(2) are reported. Four of the six form amide-amide N-H...O hydrogen bonds leading to networks constructed from amide C(4) chains or tapes containing R(2)(2) (8) hydrogen-bonded rings. The other two, 2(PF(6)) and 8(PF(6)), form networks linked through amide-anion N-H...F hydrogen bonds. The role of counterions and solvent in interrupting or augmenting direct amide-amide network propagation is explored, and the systematic relationship between the hydrogen-bonded networks formed across the series of structures is presented, showing the relationship between chain and tape arrangements and the progression from 1D to 2D networks. The scope for future systematic development of electroactive tectons into network materials is discussed.  相似文献   

16.
17.
Two novel ruthenium polypyridine complexes, [Ru(bpy)(2)Cl(BPEB)](PF(6)) and ([Ru(bpy)(2)Cl](2)(BPEB))(PF(6))(2) (BPEB = trans-1,4-bis[2-(4-pyridyl)ethenyl]benzene), were synthesized and their characterization carried out by means of elemental analysis, UV-visible spectroscopy, positive ion electrospray (ESI-MS), and tandem mass (ESI-MS/MS) spectrometry, as well as by NMR spectroscopy and cyclic voltammetry. Cyclic and differential pulse voltammetry for the mononuclear complex showed three set of waves around 1.2 V (Ru(2+/3+)), -1.0 V (BPEB(0/)(-)), and -1.15 (BPEB(-/2-)). This complex exhibited aggregation phenomena in aqueous solution, involving pi-pi stacking of the planar, hydrophobic BPEB ligands. According to NMR measurements and variable-temperature experiments, the addition of beta-cyclodextrin (betaCD) to [Ru(bpy)(2)Cl(BPEB)](+) leads to an inclusion complex, breaking down the aggregated array.  相似文献   

18.
The trans-[Fe(cyclam)(NO)Cl]Cl2 complex was synthesized by the reaction of cis-[Fe(cyclam)Cl2]Cl with NO gas. The X-ray structure of the complex showed that the [Fe–NO] moiety is linear, consistent with the NO+ character of the nitric oxide ligand. This suggestion was reinforced by the IR data, which showed the νNO at 1888 cm−1. The cyclic voltammogram of the trans-[Fe(cyclam)(NO)Cl]2+ complex presented three electrochemical processes at −0.70, 0.08 and 0.40 V versus Ag/AgCl. The first and last redox processes are centered at the NO ligand, whereas the second is characteristic of the generated aqua species, trans-[Fe(cyclam)Cl(H2O)]2+. Upon irradiation at 330 nm, pH 3.4, the title complex releases the NO moiety with the concomitant generation of the trans-[Fe(cyclam)(H2O)Cl]+ complex as suggested by electronic and IR spectroscopy as well as by cyclic voltammetry technique.  相似文献   

19.
The reaction of the [Ru(bpy)(NO(2))(4)](2-) (bpy = 2,2'-bipyridine) ion in aqueous solutions produces two different nitrosyl complexes, depending on the pH of the solution. At acidic pH, complex cis,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) was isolated. At neutral or basic pH, [Ru(bpy)(NO(2))(4)](2-) reacts to give cis,trans-Ru(bpy)(NO(2))(2)(NO)(OH). Both new complexes were fully characterized by elemental analysis and UV-vis, IR, (1)H NMR, and (15)N NMR spectroscopy. A single-crystal X-ray structure of cis,trans-Ru(bpy)(NO(2))(2)(NO)(OH) was also obtained. cis,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) isomerizes in acetone or water solution to give a mixture of the trans,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) and cis,cis-Ru(bpy)(ONO)(2)(NO(2))(NO) linkage isomers as determined by (1)H and (15)N NMR spectroscopy. A single-crystal X-ray structure of a solid solution of cis,cis-Ru(bpy)(ONO)(2)(NO(2))(NO)/trans,cis-Ru(bpy)(NO(2))(2)(ONO)(NO) was also obtained. This pair of isomers is the first crystallographically characterized compound with nitro, nitrito, and nitrosyl ligands. The kinetic studies of the Ru-NO(2) --> Ru-NO conversion reactions of [Ru(bpy)(NO(2))(4)](2)(-) in buffered solutions from pH 3 to pH 9 complement previous studies of the reverse reaction. The reactions are first order in [Ru(bpy)(NO(2))(4)](2-). At high pH, the reaction is independent of the concentration of H(+) while, at low pH, the reaction is first order in the concentration of H(+). The rate determining step of the high pH reaction involves breakage of the Ru-NO(2) bond while, at low pH, the mechanism involves a rapid reversible protonation of a NO(2) ligand followed by the rate determining loss of hydroxide to produce a nitrosyl ligand.  相似文献   

20.
As part of our search for photoactive ruthenium nitrosyls, a set of {RuNO}6 nitrosyls has been synthesized and structurally characterized. In this set, the first nitrosyl [(SBPy3)Ru(NO)](BF4)3 (1) is derived from a polypyridine Schiff base ligand SBPy3, while the remaining three nitrosyls are derived from analogous polypyridine ligands containing either one ([(PaPy3)Ru(NO)](BF4)2 (2)) or two ([(Py3P)Ru(NO)]BF4 (3) and [(Py3P)Ru(NO)(Cl)] (4)) carboxamide group(s). The coordination structures of 1 and 2 are very similar except that in 2, a carboxamido nitrogen is coordinated to the ruthenium center in place of an imine nitrogen in case of 1. In 3 and 4, the ruthenium center is coordinated to two carboxamido nitrogens in the equatorial plane and the bound NO is trans to a pyridine nitrogen (in 3) and chloride (in 4), respectively. Complexes 1-3 contain N6 donor set, and the NO stretching frequencies (nuNO) correlate well with the N-O bond distances. All four diamagnetic {RuNO}(6) nitrosyls are photoactive and release NO rapidly upon illumination with low-intensity (5-10 mW) UV light. Interestingly, photolysis of 1 generates the diamagnetic Ru(II) photoproduct [(SBPy3)Ru(MeCN)](2+) while 2-4 afford paramagnetic Ru(III) species in MeCN solution. The quantum yield values of NO release under UV illumination (lambda(max) = 302 nm) lie in the range 0.06-0.17. Complexes 3 and 4 also exhibit considerable photoactivity under visible light. The efficiency of NO release increases in the order 2 < 3 < 4, indicating that photorelease of NO is facilitated by (a) the increase in the number of coordinated carboxamido nitrogen(s) and (b) the presence of negatively charged ligands (like chloride) trans to the bound NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号