首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.  相似文献   

2.
Ab initio molecular orbital calculations have been carried out to investigate the structure and the stability of noble gas insertion compounds of the type MNgF (M=Cu and Ag, and Ng=Ar, Kr, and Xe) through second order Moller-Plesset perturbation method. All the species are found to have a linear structure with a noble gas-noble metal bond, the distance of which is closer to the respective covalent bond length in comparison with the relevant van der Waals limit. The dissociation energies corresponding to the lowest energy fragmentation products, MF+Ng, have been found to be in the range of -231 to -398 kJ/mol. The respective barrier heights pertinent to the bent transition states (M-Ng-F bending mode) are quite high for the CuXeF and AgXeF species, although for the Ar and Kr containing species the same are rather low. Nevertheless the M-Ng bond length in MNgF compounds reported here is the smallest M-Ng bond ever predicted through any experimental or theoretical investigation, indicating strongest M-Ng interaction. All these species (except AgArF) are found to be metastable in their respective potential energy surface, and the dissociation energies corresponding to the M+Ng+F fragments have been calculated to be 30.1-155.3 kJ/mol. Indeed, in the present work we have demonstrated that the noble metal-noble gas interaction strength in MNgF species (with M=Cu and Ag, and Ng=Kr and Xe) is much stronger than that in NgMF systems. Bader's [Atoms in molecules-A Quantum Theory (Oxford University Press, Oxford, 1990)] topological theory of atoms in molecules (AIM) has been employed to explore the nature of interactions involved in these systems. Geometric as well as energetic considerations along with AIM results suggest a partial covalent nature of M-Ng bonds in these systems. The present results strengthen our earlier work and further support the proposition on the possibility of experimental identification of this new class of insertion compounds of noble gas atoms containing noble gas-noble metal bond.  相似文献   

3.
The combination of matrix isolation infrared spectroscopic and density functional calculation results provides strong evidence that the transition metal monoxide cation, ScO+, coordinates five noble gas atoms in forming the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe) complexes in noble gas matrixes.  相似文献   

4.
Ab initio calculations predict the existence of the compounds Ng(-C[triple bond]CH)4 and Ng(-C[triple bond]CH)6, where Ng=Xe or Kr. Presently known organic noble gas compounds have a coordination number of two at most. The Ng(-C[triple bond]CH)(4) molecules have D(4h) symmetry, and Ng(-C[triple bond]CH)(6) molecules have O(h) symmetry. The bonding in all these compounds is partly ionic and partly covalent, with significant contributions from both types of bonding. The relatively high vibrational frequencies and the substantial Ng-(C[triple bond]CH) binding energy in these species indicate that these compounds should be fairly stable, at least in cryogenic conditions. These compounds could be a very interesting addition to the range of known organic noble gas compounds. Suggestions are made on possible approaches to their preparation.  相似文献   

5.
The matrix isolation infrared spectroscopic and quantum chemical calculation results indicate that vanadium oxides, VO2 and VO4, coordinate noble gas atoms in forming noble gas complexes. The results showed that VO2 coordinates two Ar or Xe atoms and that VO4 coordinates one Ar or Xe atom in solid noble gas matrixes. Hence, the VO2 and VO4 molecules trapped in solid noble gas matrixes should be regarded as the VO2(Ng)2 and VO4(Ng) (Ng = Ar or Xe) complexes. The total V-Ng binding energies were predicted to be 12.8, 18.2, 5.0, and 7.3 kcal/mol, respectively, for the VO2(Ar)2, VO2(Xe)2, VO4(Ar), and VO4(Xe) complexes at the CCSD(T)//B3LYP level of theory.  相似文献   

6.
Quantum-chemical calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) have been carried out for the endohedral fullerenes Ng2@C60 (Ng=He-Xe). The nature of the interactions has been analyzed with charge- and energy-partitioning methods and with the topological analysis of the electron density (Atoms-in-Molecules (AIM)). The calculations predict that the equilibrium geometries of Ng2@C60 have D3d symmetry when Ng=Ne, Ar, Kr, while the energy-minimum structure of Xe2@C60 has D5d symmetry. The precession movement of He2 in He2@C60 has practically no barrier. The Ng--Ng distances in Ng2@C60 are much shorter than in free Ng2. All compounds Ng2@C60 are thermodynamically unstable towards loss of the noble gas atoms. The heavier species Ar2@C60, Kr2@C60, and Xe2@C60 are high energy compounds which are at the BSSE corrected SCS-MP2/TZVPP level in the range 96.7-305.5 kcal mol(-1) less stable than free C60+2 Ng. The AIM method reveals that there is always an Ng--Ng bond path in Ng2@C60. There are six Ng--C bond paths in (D3d) Ar2@C60, Kr2@C60, and Xe2@C60, whereas the lighter D3d homologues He2@C60 and Ne2@C60 have only three Ng--C2 paths. The calculated charge distribution and the orbital analysis clearly show that the bonding situation in Xe2@C60 significantly differs from those of the lighter homologues. The atomic partial charge of the [Xe2] moiety is +1.06, whereas the charges of the lighter dimers [Ng2] are close to zero. The a2u HOMO of (D3d) Xe2@C60 in the 1A1g state shows a large mixing of the highest lying occupied sigma* orbital of [Xe2] and the orbitals of the C60 cage. There is only a small gap between the a2u HOMO of Xe2@C60 and the eu LUMO and the a2u LUMO+1. The calculations show that there are several triplet states which are close in energy to each other and to the 1A1g state. The bonding analysis suggests that the interacting species in Xe2@C60 are the charged species Xe2q+ and C60q-, where 1相似文献   

7.
This article presents a theoretical study on a number of selected noble gas containing systems of the general formula FNgR and NgR (Ng = He, Ne, Ar, Kr, Xe and R = CH3, CN, CCH, BO, BNH, H, BeO, and AuF). The principal structures, bond energies, spectroscopic, and electronic properties of 28 noble gas containing molecules were investigated using density functional theory at the BMK level. Quantum theory of atoms in molecules, natural bond orbital, and several other analysis methods have been used to provide more insight into the nature of noble gas bonds. Although both F? Ng and Ng? R bonds in the investigated molecules are assigned to have partially covalent and partially electrostatic nature, the covalent character is dominant in Ng? R bonds. In the second part, the intermolecular interactions between FNgR molecules and hydrogen fluoride are overviewed with emphasis on the hydrogen bonding through the fluorine side of noble gas molecule with hydrogen of HF. The calculated interaction energies were found to decrease in magnitude going down the noble gas series. For all noble gases, the strongest hydrogen bond has been observed in the case R=CH3. On the contrary, using R=CN in the FNgR moiety weakens the interaction strength. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
HXeCCH molecule is prepared in Ar and Kr matrices and characterized by IR absorption spectroscopy. The experiments show that HXeCCH can be made in another host than the polarizable Xe environment. The H-Xe stretching absorption of HXeCCH in Ar and Kr is blueshifted from the value measured in solid Xe. The maximum blueshifts are +44.9 and +32.3 cm(-1) in Ar and Kr, respectively, indicating stabilization of the H-Xe bond. HXeCCH has a doublet H-Xe stretching absorption measured in Xe, Kr, and Ar matrices with a splitting of 5.7, 13, and 14 cm(-1), respectively. Ab initio calculations for the 1:1 HXeCCHcdots, three dots, centeredNg complexes (Ng = Ar, Kr, or Xe) are used to analyze the interaction of the hosts with the embedded molecule. These calculations support the matrix-site model where the band splitting observed experimentally is caused by specific interactions of the HXeCCH molecule with noble-gas atoms in certain local morphologies. However, the 1:1 complexation is unable to explain the observed blueshifts of the H-Xe stretching band in Ar and Kr matrices compared to a Xe matrix. More sophisticated computational approach is needed to account in detail the effects of solid environment.  相似文献   

9.
We have designed a new type of molecule with a noble gas (Ng = Kr and Xe) atom in a six-membered ring. Their structures and stability have been studied by density functional theory and by correlated electronic structure calculations. The results showed that the six-membered ring is planar with very short Ng–O and Ng–N polar covalent bonds. The calculated energy barriers for all the unimolecular dissociation pathways are higher than 20 and 35 kcal/mol for Ng = Kr and Xe, respectively. The current study suggests that these molecules and their derivatives might be synthesized and observable at cryogenic conditions.  相似文献   

10.
The fluorine-less noble gas containing anions OBONgO and OCNNgO have been studied by correlated electronic structure calculation and density functional theory. The obtained energetics indicates that for Ng=Kr and Xe, these anions should be kinetically stable at low temperature. The molecular structures and electron density distribution suggests that these anions are stabilized by ion-induced dipole interactions with charges concentrated on the electronegative OBO and OCN groups. The current study shows that in addition to the fluoride ion, polyatomic groups with strong electronic affinities can also form stable noble gas containing anions of the type Y…NgO.  相似文献   

11.
Following our recent study on Ng-Pt-Ng (Ng=Ar,Kr,Xe) [J. Chem. Phys. 123, 204321 (2005)], the binding of noble-gas atoms with Pd atom has been investigated by the ab initio coupled cluster CCSD(T) method with counterpoise corrections, including relativistic effects. It is shown that two Ng atoms bind with Pd atom in linear geometry due to the s-d(sigma) hybridization in Pd where the second Ng atom attaches with much larger binding energy than the first. The binding energies are evaluated as 4.0, 10.2, and 21.5 kcalmol for Ar-Pd-Ar, Kr-Pd-Kr, and Xe-Pd-Xe, respectively, relative to the dissociation limit, Pd ((1)S)+2Ng. In the hybrid Ng complexes, the binding energies for XePd and Ng (=Ar,Kr) are evaluated as 4.0 and 6.9 kcalmol for XePd-Ar and XePd-Kr, respectively. The fundamental frequencies and low-lying vibrational-rotational energy levels are determined for each compound by the variational method, based on the three-dimensional near-equilibrium potential energy surface. Results of vibrational-rotational analyses for Ng-Pt-Ng (Ng=Ar,Kr,Xe) and Xe-Pt-Ng (Ng=He,Ne,Ar,Kr) compounds are also given.  相似文献   

12.
The matrix isolation infrared spectroscopic and quantum chemical calculation results indicate that late transition metal monoxides CrO through NiO coordinate one noble gas atom in forming the NgMO complexes (Ng = Ar, Kr, Xe; M = Cr, Mn, Fe, Co, Ni) in solid noble gas matrixes. Hence, the late transition metal monoxides previously characterized in solid noble gas matrixes should be regarded as the NgMO complexes, which were predicted to be linear. The M-Ng bond distances decrease, while the M-Ng binding energies increase from NgCrO to NgNiO. In contrast, the early transition metal monoxides, ScO, TiO, and VO, are not able to form similar noble gas atom complexes.  相似文献   

13.
Ab initio calculations at the MP2 level of theory disclose the conceivable existence of neutral complexes containing four or five distinct noble gases (Ng) each bound to a distinct Be‐atom. These multicenter polynuclear Ng molecules are formally obtained by replacing the H‐atoms of CH4 and but‐2‐yne with ? NBeNg moieties, which behave as independent monovalent ‘functional groups’. Our investigated complexes include the five homotetranuclear [C(NBeNg)4] complexes 1 – 5 (Ng=He? Xe), the five heterotetranuclear complexes [CN4Be4(He)(Ne)(Ar)(Kr)] ( 6 ), [CN4Be4(He)(Ne)(Ar)(Xe)] ( 7 ), [CN4Be4(He)(Ne)(Kr)(Xe)] ( 8 ), [CN4Be4(He)(Ar)(Kr)(Xe)] ( 9 ), and [CN4Be4(Ne)(Ar)(Kr)(Xe)] ( 10 ), and the heteropentanuclear complex [HC4N5Be5(He)(Ne)(Ar)(Kr)(Xe)] ( 11 ). We also investigated the five model complexes [H3CNBeNg] (Ng=He? Xe) containing a single ? NBeNg moiety. The geometries and vibrational frequencies of all these species, invariably characterized as minimum‐energy structures, were computed at the MP2(full)/6‐31G(d,p)/SDD level of theory, and their stability with respect to the loss of the various Ng‐atoms was evaluated by single‐point calculations at the MP2(full)/6‐311G(d)/SDD level of theory. The beryllium‐Ng binding energies range from ca. 17 (Ng=He) to ca. 63 (Ng=Xe) kJ/mol, and the results of natural‐bond‐orbital (NBO) and atoms‐in‐molecules (AIM) analysis reveal that the Be? Ng interaction is essentially electrostatic for helium, neon, argon, and krypton, and has probably a small covalent contribution for xenon.  相似文献   

14.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which is trapped in a triplet state in solid argon at 7 K, based on agreement between observed and relativistic density functional theory (DFT) calculated isotopic frequencies ((12)C(16)O, (13)C(16)O, (12)C(18)O). This observation contrasts a recent neon matrix investigation, which trapped CUO in a linear singlet state calculated to be about 1 kcal/mol lower in energy. Experiments with krypton and xenon give results analogous to those with argon. Similar work with dilute Kr and Xe in argon finds small frequency shifts in new four-band progressions for CUO in the same triplet states trapped in solid argon and provides evidence for four distinct CUO(Ar)(4-n)(Ng)(n) (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes for each Ng. DFT calculations show that successively higher Ng complexes are responsible for the observed frequency progressions. This work provides the first evidence for noble gas-actinide complexes, and the first example of neutral complexes with four noble gas atoms bonded to one metal center.  相似文献   

15.
Ab initio and density functional theory‐based calculations are performed to study the structure, stability, and nature of bonding of superhalogen‐supported noble gas (Ng) compounds of the type HNgY where (Ng = Ar‐Rn; Y = BeF3). Here, BeF3 acts as the superhalogen. Calculations show that the HNgBeF3 spontaneously dissociates into product following the dissociation channels: HNgBeF3 → HBeF3 + Ng and HNgBeF3 → Ng + HF + BeF2. The transition states are optimized and the energy barriers are computed to show the metastable behavior of HNgBeF3. HNgBeF3 molecules are kinetically stable with respect to the first dissociation process having energy barriers of 1.0, 5.0, 10.6, and 13.9 kcal/mol for Ar, Kr, Xe, and Rn analogues, respectively, at CCSD(T)/Aug‐cc‐pVTZ level. These calculations suggest that the HXeBeF3 and HRnBeF3 can be shown to be stable up to ∼100 K temperature with a half‐life of ∼102 seconds. The nature of H Ng and two different types of Ng F bonds in HNgBeF3 molecules is explored through the natural bond orbital and electron density analyses. The large Wiberg bond index (WBI) values for the H Ng bond indicate the formation of almost a single bond in between H‐atoms and Ng‐atoms, whereas small WBI values for the two Ng F bonds indicate a noncovalent interaction in between them. The electron density analysis further supports the covalency of the H Ng bond and noncovalent interaction in the two Ng F bonds in HNgBeF3.  相似文献   

16.
The structural stability and bonding energies of the neutral noble gas molecules FNgX and their anions FNgX? (Ng = He, Ar, Kr; X = O, S) are discussed at the CCSD(T)/aug‐cc‐pVnZ (n = D, T) levels. Results reveal that only two neutral FKrX molecules are stable, whereas their FHeX and FArX counterparts are not. All their anions are stable and the stability mainly derives from the contribution of the extra electron, i.e., the attachment of the electron greatly enhances the orbital interactions of two bonds, F? Ng and Ng? X. Different from the anion counterparts, the electrostatic interaction energy plays a crucial role in the FKrX stability. Compared with those unstable FHeX and FArX counterparts, the enough charge distribution over each atom of FKrX ensures the effective bonding between F and Kr, and between Kr and X, consequently strengthen the stability of the neutral FKrX (X = O, S) structures. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
Reactions of rhodium atoms with dioxygen molecules in solid argon have been investigated using matrix isolation infrared absorption spectroscopy. The rhodium-dioxygen complexes, Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO), are produced spontaneously on annealing. The Rh(eta2-O2) complex rearranges to the inserted RhO2 molecule under visible light irradiation. Experiments doped with xenon in argon show that the rhodium-dioxygen complexes are coordinated by one or two noble gas atoms in solid noble gas matrixes. Hence, the Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO) molecules trapped in solid noble gas matrixes should be regarded as the Rh(eta2-O2)(Ng)2, Rh(eta2-O2)2(Ng)2, and Rh(eta2-O2)2(eta1-OO)(Ng) (Ng = Ar or Xe) complexes. The product absorptions are identified on the basis of isotopic substitution and density functional theory calculations.  相似文献   

18.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which gives rise to 852.5 and 804.3 cm-1 infrared absorptions for the triplet state CUO(Ar)n complex in solid argon at 7 K. Relativistic density functional calculations show that the CUO(Ar) complex is stable and that up to four or five argon atoms can complex to CUO. When 1-3% Xe is added to the argon/CO reagent mixture, strong absorptions appear at 848.0 and 801.3 cm-1 and dominate new four-band progressions, which increase on annealing to 35-50 K as Xe replaces Ar in the intimate coordination sphere. Analogous spectra are obtained with 1-2% Kr added. This work provides evidence for eight distinct CUO(Ng)n(Ar)4-n (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes and the first characterization of neutral complexes involving four noble-gas atoms on one metal center.  相似文献   

19.
Noble‐gas‐noble‐metal hydroxides NgAuOH (Ng = Kr, Xe) are investigated at the MP2 theoretical level. All species are found to be in Cs symmetry with an approximate linear Ng? Au? O moiety. The noble‐gas‐noble‐metal bond lengths are comparable with covalent limits, and the corresponding binding energies have been computed to be 59.6 and 83.4 kJ/mol for KrAuOH and XeAuOH, respectively. Except the charge‐induced dipole contribution to the binding energies, the remainder could be ascribed to the higher‐order charge‐induction energies, dispersion energies, the contributions of multipole moments on AuOH and covalent effects. The title species are sufficiently chemical bound and are expected to be stable species theoretically. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from frequencies for the (1)Sigma(+) CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)(n), and the CUO(Ne)(n-1)(Ng) complexes are likewise specified. The next singlet CUO(Ne)(x)(Ng)(2) complexes in excess neon follow in like manner. However, the higher CUO(Ne)(x)(Ng)(n) complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)(n) values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr, or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号