首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A grafted polymer reference electrode (GPRE) (polystyrene grafted with acrylonitrile as a monomer using gamma irradiation) was fabricated as a reference electrode using cyclic voltammetry (CV). The redox process of K3Fe(CN)6 during CV was studied. It was found that the redox current peaks of Fe(II)/Fe(III) in 0.1 M of KCl as supporting electrolyte is given the same oxidation–reduction current as in the Ag/AgCl reference electrode, indicating a good result of GPRE and, hence, it can be used for voltammetric analysis technique. The physical properties of GPRE include good hardness, insoluble in non-aqueous electrolytes (except dimethyl formamide and chloroform), and good stability at different solvents. In addition, the sensitivity under conditions of CV is significantly dependent on the scan rate (SR) and variation in concentration. At different SRs, redox peaks of K3Fe(CN)6 were observed in a reversible process: Fe(II)/Fe(III). Interestingly, the redox reaction of Fe(II)/Fe(III) solution using GCE versus GPRE remains constant even after 15 cyclings. It is therefore evident that the GPRE possesses some degree of stability. Also, the new reference electrode GPRE has improved the properties of electroanalysis of CV on the working electrode GCE in reliability with the relative standard deviation.  相似文献   

2.
In this study, a grafted polymer (GP) with ZnO nanoparticles (GP/ZnO NPs) was attached on the surface of glassy carbon electrode (GCE), in order to produce a new modified electrode (GP/ZnO NPs-GCE). The gamma irradiation method was used to grafted polystyrene (polymer) with acrylonitrile (monomer), while slow evaporation process was used to prepare the new modified electrode. The cyclic voltammetry (CV) of K4[Fe(CN)6] was used to study the electrochemical properties GP/ZnO NPs-GCE. The peak separation (ΔEpa-c) was 500 mV between the redox peaks of Fe(II)/Fe(III) in an aqueous solution of 1 M KCl and the current ratio of redox current peaks (Ipa/Ipc) was ≈ 1 for the modified electrode. This indicated that the modified electrode has s good reversibility and conductivity, wherefore; it was applied in the voltammetric filed. It was found that the modified electrode GP/ZnO NPs-GCE have a reasonable solubility and stability at various pH medium. Additionally, the sensitivity of the electrochemical analysis by cyclic voltammetric (CV) method is extensively subjected to the pH medium and the scan rate (SR). A couple of redox current peaks of K4[Fe(CN)6] in KCl solution was observed with a reversible process: Fe3+/Fe2+. Finally a good diffusion coefficient of electroactive species (D) for the new modified electrode was found in this study by chronoamperometry method using Cottrell equation.  相似文献   

3.
The electrochemical redox behavior of Fe(II)/Fe(III) systems formed during the oxidation of complexes [Fe(C7H4NO3S)2(H2O)4] · 2H2O (Fe-sac) and [Fe(C7H4NO3S)2(C12H8N2] · 2H2O (Fe-sac-phen) have been investigated using cyclic voltammetry in the aqueous medium. In the CVs one pair of well-defined cathodic and anodic peaks appear for the transfer of single electron in the Fe-sac complex. The peak potentials are much wider separated as compared with the free (uncoordinated) Fe(II)/Fe(III) system. The ΔE values demonstrate that the electrode process is irreversible. In the presence of secondary ligand, 1,10-phenanthroline (Fe-sac-phen complex), the redox behavior of iron complexes is quasireversible. The effect of pH on the redox behavior of iron system is studied in acetate buffer. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 12, pp. 1504–1509. The text was submitted by author in English  相似文献   

4.
The electrochemical Peltier effect was studied at a gold electrode in solutions containing some Fe(II)/Fe(III) redox couples by measuring the local temperature change in the electrode/solution interphase under controlled-potential and controlled-current polarization. Relative values of the electrochemical Peltier coefficient for the cathodic process at equilibrium potential, which is denoted by (Πc)I=0, were determined by analyzing the observed temperature change as a function of current. The values of (Πc)I=0 were found to be positive for the Fe(H2O)62+/Fe(H2O)63+ systems in HClO4 (1 M), HNO3 (1 M), H2SO4 (0.5 M), and HCl (1 M), their magnitudes being very similar in the first three acid solutions, but smaller in the HCl solution. On the other hand, a negative value of (Πc)I=0 was obtained in the case of a Fe(CN)64?/Fe(CN)63? couple in a H2SO4 (0.5 M) solution. Such a difference in the Peltier coefficient is considered to be due to the difference in the ionic species of iron involved in the electrode reaction.  相似文献   

5.
A newly modified electrode was prepared by mechanical immobilization of copper hexacyanoferrate (CuHCF) on a graphite electrode. The modified electrode was characterized by cyclic voltammetric experiments. The effect of different background electrolytes, pHs and scan rates on the electrochemical behaviour of the electrode has been evaluated. In NH4Cl two reversible redox peaks were observed. The first redox peak corresponding to Cu+/Cu2+ is observed only in this medium. The second redox peak corresponds to the Fe(CN)6 4–/Fe(CN)6 3– couple. Both anodic peaks were used for catalytic oxidation of ascorbic acid. As the anodic current for catalytic oxidation was proportional to the amount of ascorbic acid, an analytical method was developed for the determination of ascorbic acid in commercial samples.  相似文献   

6.
This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of the redox couple Sm(III)/Sm(II) in an eutectic LiF–CaF2 melt containing SmF3. The first step of reduction for Sm(III) ions involving one electron exchange in soluble/soluble Sm(III)/Sm(II) system was found on a tungsten electrode. The study of the Sm(II)/Sm(0) electrode reaction was not feasible, due to insufficient electrochemical stability of LiF–CaF2. The first step was found reversible at temperatures 1,075 and 1,125 K up to polarization rate 1 V/s and at temperature 1,175 K the process was reversible at all sweep rates applied in this study. The diffusion coefficients (D) of Sm(II) and Sm(III) ions were determined by cyclic voltammetry, showing that D decreases when oxidation state increase, while the activation energy of diffusion (E a) increases. The standard rate constants of charge transfer (k s) were calculated for the redox couple Sm(III)/Sm(II) at 1,075 and 1,125 K based on the data of cyclic voltammetry.  相似文献   

7.
李敏  杨昌英  周文凯  朱敏 《应用化学》2010,27(9):1093-1098
采用电聚合法在玻碳电极(GCE)表面得到导电性能良好的聚L-谷氨酸(PGA)薄膜,通过共价键合法将血红蛋白(Hb)固定于电极表面得到稳定且具有催化活性的Hb/PGA/GCE修饰电极,将其用于对苯二胺(PPD)的可逆氧化。 修饰电极交流阻抗及血红蛋白直接电化学实验表明,血红蛋白成功地固定于电极表面,保持良好的电催化活性,能有效催化H2O2的还原。 PPD在电极上表现为受吸附控制的准可逆氧化还原反应,Ip,a/Ip,c约为1.02,电极没有明显的钝化现象。 氧化还原峰电流与PPD的浓度均呈良好的线性关系,Ip,a(μA)=3.124+0.705cPPD(mmol/L)(r=0.9973)。 H2O2的存在使PPD氧化还原峰型更对称,可逆性更好,表明体系中PPD氧化与过氧化酶催化途径一致。  相似文献   

8.
A newly modified electrode was prepared by mechanical immobilization of copper hexacyanoferrate (CuHCF) on a graphite electrode. The modified electrode was characterized by cyclic voltammetric experiments. The effect of different background electrolytes, pHs and scan rates on the electrochemical behaviour of the electrode has been evaluated. In NH4Cl two reversible redox peaks were observed. The first redox peak corresponding to Cu+/Cu2+ is observed only in this medium. The second redox peak corresponds to the Fe(CN)6 4–/Fe(CN)6 3– couple. Both anodic peaks were used for catalytic oxidation of ascorbic acid. As the anodic current for catalytic oxidation was proportional to the amount of ascorbic acid, an analytical method was developed for the determination of ascorbic acid in commercial samples. Received: 26 May 1998 / Revised: 15 March 1999 / Accepted: 20 March 1999  相似文献   

9.
A non-plasticized polyacrylamide polymer (PAA) coupled with (phthalocyaninato) gallium(III) ([Ga(pc)]+), PAA-[Ga(pc)], was first synthesized, and the potentiometric response behavior of this PAA-[Ga(pc)] modified platinum electrode to certain ions was examined in the non-aqueous solvents acetonitrile (AN), dimethylacetamide (DMA), and N-methylpyrrolidinone (NMP). The electrode showed a Nernstian or near-Nernstian response to CN and F in AN, DMA, and NMP, but it showed a non-thermodynamic response to Cland Br in all the above solvents. Both spectrophotometric and cyclic voltammetric methods were used to investigation the reaction of [Ga(pc)]+ with the ions in the solvents. The results revealed that the special selective response phenomena were due to the complex formation reactions of the ions with [Ga(pc)]+. The reaction mechanisms were determined on the basis of the shift of the maximum absorption peaks, the appearance of the new peaks on UV-vis spectra for [Ga(pc)]+ in the presence of CN and F and the clear difference in the redox voltammogram for [Ga(pc)]+ at the platinum electrode between the addition of F and Br in DMA. There were no obvious differences between the three solvents in terms of their influence on the complexing. It was concluded that the electrode might have applications in obtaining the solubility product of NaF in AN.  相似文献   

10.
Electrochemical characterization of gold cysteamine self-assembled monolayer, in situ functionalized with ethylenediaminetetraacetic acid (Au-CA-EDTA SAM), is described by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Osteryoung square wave voltammetry (OSWV). The results obtained by EIS and CV, in the presence of [Fe(CN)6]3−/4− redox probe, show that EDTA is successfully grafted to the surface of Au-CA electrode. Reproducible and reversible variation of the Rct and ΔEp as a function of solution pH show that Au-CA-EDTA SAM is stable in a wide range of pH and potentials. Accumulation of the Pb2+ and Cu2+ ions on the Au-CA-EDTA SAM electrode is investigated using faradaic currents or impedimetric effects measured by OSWV and EIS, respectively. These results reveal the presence of active complexing functional groups of EDTA on the surface, and thus, the formation of Au-CA-EDTA SAM electrode. The new sensor responds to the Pb2+ and Cu2+ separately and simultaneously in a wide linear range of concentrations.  相似文献   

11.
Novel diiron complexes with an Fe2(mu-OMe)2 core were studied as models of the active site of nonheme iron-containing enzymes. X-ray crystal structures of the complexes showed the existence of two types of ligand folding-parallel and twisted-both of which have four virtually equivalent phenolato groups sticking out from the Fe2O2 rhombic plane. Cyclic voltammetry measurements revealed two or more distinct redox waves in a region of relatively high potential, in addition to known Fe(II)/Fe(III) redox waves in a region of lower potential. These new peaks were assigned to the high-valence state of iron atoms, that is, Fe(III)Fe(IV) and Fe(IV)Fe(IV), resonating with the phenoxyl radical(s). The split width of the redox waves ranged from 0.14 to 0.20 eV, which may be a measure of the electronic interaction of the phenolate groups through the Fe2(mu-OMe)2 core.  相似文献   

12.
Direct electrochemistry of hemoglobin (Hb) was realized on a Nafion and CuS microsphere composite film modified carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder. Scanning electron microscopy (SEM), UV-Vis absorption spectroscopy and cyclic voltammetry were used to characterize the fabricated Nafion/CuS/Hb/CILE. Experimental results showed that a pair of well-defined quasi-reversible redox peaks appeared with the formal potential as ?0.386 V (vs. SCE) in pH 7.0 Britton-Robinson (B-R) buffer solution, which was attributed to the Hb heme Fe(III)/Fe(II) redox couples. The electrochemical parameters of Hb in the composite film were carefully investigated with the charge transfer coefficient (α), the electron transfer number (n) and the electron transfer rate constant (k s) as 0.505, 1.196 and 0.610 s?1, respectively. The composite film provided a favorable microenvironment for retaining the native structure of Hb. The presence of CuS microspheres showed great improvement on the electron transfer rate of Hb with the CILE, which maybe due to the contribution of specific characteristics of CuS microspheres and the inherent advantages of ionic liquid on the modified electrode. The fabricated Hb modified electrode showed good electrocatalytic ability in the reduction of H2O2. The proposed bioelectrode can be used as a new third generation H2O2 biosensor.  相似文献   

13.
A nanobiocompatible composite containing hemoglobin (Hb), ZnO nanoparticles (nano‐ZnO) and ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was fabricated and further modified on the glassy carbon electrode (GCE). The electrochemical behaviours of Hb in the composite film were carefully studied and a pair of quasi‐reversible redox peaks appeared in pH 7.0 phosphate buffer solution, which was attributed to the electrode reaction of Hb heme Fe(III)/Fe(II) redox couple. The presences of nano‐ZnO and BMIMPF6 in the film can retain the bioactivity of Hb and greatly enhance the direct electron transfer of Hb. The immobilized Hb showed high stability and good electrocatalytic ability to the reduction of hydrogen peroxide and O2.  相似文献   

14.
New films of iron complex with 4,7-bis(2-aminophenyl)-methylaminosulfonylphenyl)-1,10-phenanthroline (APP) and 5-amino-1,10-phenanthroline (AP) are prepared on the electrode surface of In–Sn oxide conducting glass (ITO) by electrochemical oxidation. The thickness (Φ) of the films prepared on the ITO can be controlled by the number of cycles of the potential scan. The resulting film-coated electrodes show well-defined reversible vol-tammograms corresponding to the redox reaction of the Fe(II/III) complexes in 0.1 M NaClO4 acetonitrile (AN), a mixture of butylene carbonate (BC) and propylene carbonate (PC) and poly2-hydroxyethylmethacrylate gel containing BC and PC. The electron transfer processes within the films can be treated apparently as diffusional processes characterized by the rate constants of the apparent diffusion coefficient (Dapp). The value of Dapp increase from 1.0 × 10?9 to 1.6 × 10?8 cm2 sec?1 as the Fe complex concentration (CFe) increases from 0.06 to 1.04 M for the [Fe(AP)3] complex film (Φ=0.80 μm) in 0.2 M NaClO4/AN solution. The Dapp value for the [Fe(APP)3) complex film (CFe = 0.19 M , Φ= 0.78 μm) is 3.5 × 10?9 cm2 sec?1 in 0.2 M NaClO4/AN solution. The Dapp values of the [Fe(AP)3] complex film in the PC + BC mixture and gel containing 1.0 M NaClO4 were smaller than those obtained in AN solution by an order of magnitude. The dependence of the apparent formal potential of the Fe(II/III) redox reaction for the [Fe(AP)3] complex film on the activity of NaClO4 supporting electrolyte in AN shows that Na+ moves preferentially across the polymer/solution interfaces during the redox reaction. The Fe(II/III) redox reaction of the Fe complex films shows reversible electrochromic response between red and colorless.  相似文献   

15.
A glassy carbon (GC) electrode modified with silver pentacyanonitrosylferrate (AgPCNF) film as a redox mediator was fabricated. Cyclic voltammetry was used to study the redox property of AgPCNF modified electrode. The modified electrode showed a well‐defined redox couple due to [AgIFeIII/II(CN)5NO]1‐/2‐system. The effects of scan rates, supporting electrolytes and solution pHs were studied on the electrochemical behavior of the modified electrode. The feasibility of using the AgPCNF modified electrode to measure L ‐cysteine was investigated. It showed an excellent electrocatalytic activity towards the oxidation of L ‐cysteine and the anodic currents were proportional to the L ‐cysteine concentration in the range of 0.1 μM to 20 μM, the linear regression equation is Ipa(μA) = ‐68.58 ‐ 5.78CL ‐cysteine (μM), with a correlation coefficient 0.998 for N = 23. The detection limit was down to 3.5 × 10‐8 M (three times the ratio of signal to noise).  相似文献   

16.
New films of the iron complexes with bis((2-hydroxyphenyl)methylaminosulfonyl)bathophenanthroline(HPBP) and bis((2-aminophenyl)methylaminosulfonyl)bathophenanthroline(APBP) ligands are prepared on the electrode surfaces by electrochemical polymerization. The resulting film-coated electrode shows a well-defined reversible voltammogram corresponding to the redox reaction of the Fe(II/III) complexes and an electrochromic change from red(absorption maximum: 540 nm) to colorless. The response rate of the color change to a potential step was found to be correlated to the apparent diffusion coefficient(Dapp) for the homogeneous charge-transport process within the film. The Dapp values estimated are (3-4) × 10−9cm2s−1 for the [Fe(APBP)3] film and(1-2) × 10−8cm2s−2 for the [Fe(HPBP)3] film, respectively, by potential-step chronoamperometric and chronocoulometric methods. The result of electrochemical quartz crystal microbalance(EQCM) measurements4) and dependence of the formal potential of the metal complex of the Fe(II/III) redox couple with activity of the supporting electrolyte anion in NaClO4 aqueous solution showed that anion, cation, and solvent move simultaneously across the polymer film/solution interface during the redox reaction. A piezoelectric admittance measurement4) of the poly[Fe(APBP)3] coated quartz crystal electrode showed that the viscosity of the film is affected by the oxidation state of iron.  相似文献   

17.
《Electroanalysis》2005,17(18):1681-1686
Adsorptive‐stripping voltammetry and chronopotentiometry were used to study the adsorption and oxidation of quercetin at both graphite‐nujol paste electrode (GPE) and carbon nanotubes‐nujol paste electrode (CNTPE) for the potential application of carbon nanotube to flavonoids determination. As compared with GPE, CNTPE showed very great power to adsorb quercetin and resulted in a considerable signals enhancement. The adsorption isotherm of quercetin on CNTPE was of Langmuir type, and the stripping of quercetin adsorbed on CNTs showed a quasi‐reversible oxidation reaction involving two‐electron and two‐proton. The high adsorbtive activity of CNTPE was contributed to the high specific surface area and the special surface characteristics of carbon nanotubes. The peak current response of differential pulse voltammetry depended linearly on quercetin concentration. A linear equation Ip(μA)=0.987c(μmol L?1)+0.023 with a correlation coefficient of 0.994 was obtained over the concentration range 0.1–1.0 μmol L?1.  相似文献   

18.
In this work, for the first time, the direct electron transfer of iron‐containing superoxide dismutase (Fe‐SOD) was observed by cyclic voltammetry on a gold (Au) electrode in three RTILs, i.e., 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4), 1‐n‐propyl‐3‐methylimidazolium tetrafluoroborate (PMIBF4) and 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIBF4). And the results demonstrate that when the scan rate was as low as 1 mV/s, a pair of well‐defined quasi‐reversible peaks of Fe‐SOD was presented, while as the potential scan rate was above 10 mV/s, the reduction peak of Fe‐SOD disappeared though its oxidation peak could be clearly observed even as the potential scan rate was up to 400 mV/s, strongly indicating that these CVs we observed were attributable to Fe‐SOD rather than the impurities in RTILs. Its catalysis for oxygen reduction reaction (ORR) was directly verified by the shifting of formal potential, E0′, of ORR, to the positive direction though the value of standard rate constant, κ0, corresponding to ORR, was not much enhanced. In PMIBF4, for the multi‐walled carbon nanotubes (MWCNTs)‐modified gold electrode, both the reduction peak current and oxidation peak current for oxygen redox reaction were all dramatically enhanced compared to the case of a bare gold electrode, and the value of κ0 was also increased from 3.1 × 10?3 cm s?1 for the bare gold electrode, to 17.5 × 10?3 cm s?1. Hence, in the presence of Fe‐SOD in RTILs, MWCNTs, showing catalysis for the electron transfer process of ORR, coupled with Fe‐SOD, leading to the shifting of formal potential corresponding to ORR to the positive direction, presented us a satisfactory catalysis for ORR in RTILs. Some reasons available for this catalysis behavior stemming from Fe‐SOD, and MWCNTs as well, for ORR are discussed based on the previously developed proposition.  相似文献   

19.
A heterobimetallic supramolecular polymer (polyRuFe) with alternately complexed Ru(II) and Fe(II) is prepared following a stepwise synthetic route through harnessing first the strongly binding metal ion Ru(II) and then the weakly binding metal ion Fe(II). A high yield of product is achieved in each step. The heterometal ions are incorporated into the polymer chain in identical coordination environments formed by two 2,2′:6′,2″-terpyridine moieties. Characterization is accomplished by NMR spectroscopy, MALDI–TOF mass spectrometry, UV–Vis spectroscopy, and cyclic voltammetry. PolyRuFe shows a wide optical window (λ = 311–577 nm) and a broad distinct reversible redox nature of two types, originated from the coupling of the two heterometallic segments into the polymer chain. Such characteristics of polyRuFe suggest its potential for various electrochemical and electro-optical applications.  相似文献   

20.
The reduction and reoxidation processes of the Fe(II)/Fe(Hg) system in thiocyanate solutions at stationary mercury electrodes have been investigated by cyclic voltammetric, anodic stripping and controlled potential electrolysis methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M Fe(II), the voltammogram on the first cycle at. 0.05 V s?1 gives two consecutive cathodic peaks near ?1.2 and ?1.39 V with a hysteresis on the reversal, and an anodic wave with two large peaks near ?0.58 and ?0.05 V and two small peaks near ?0.52 and ?0.43 V, respectively. The multicyclic voltammogram under the same conditions in the potential region between 0.00 and ?1.50 V gives a cathodic wave with a principal peak near ?1.02 V and two small peaks near ?0.02 and ?0.53 V, respectively, and an anodic wave with a principal peak near ?0.72 V, three small peaks near ?0.64, ?0.52 and ?0.40 V, and with a shoulder near ?0.05 V, respectively. The variation of the shape of the voltammogram on the second and subsequent runs is due to the formation of S2? and CN? during the process of electroreduction of Fe(II). A mechanism is proposed which involves an initial reduction of Fe(II)?SCN? produced in an activation step at a mercury electrode, followed by the chemical redox reaction of a part of Fe(0)?SCN? in the species giving FeS and CN?, and takes into account the influence of FeS and CN? on the further reduction and reoxidation of iron. Both FeS and CN? stimulate further reduction, and reoxidation of iron. The hysteresis of the cathodic wave on the first cycle arises from the fact that Fe(II) is reduced more easily at the mercury electrode covered with FeS than at a pure mercury electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号