首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcrystalline cellulose (MCC) was modified with pyridone derivatives such as pyridone diester (PDE) and pyridone diacid (PDA) by using succinic acid anhydride as a linker. The modified MCCs were characterized by the fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, elemental analysis and solid state 13C NMR. The adsorption capacities of the modified MCCs to cationic dyes were examined by using methylene blue (MB) as a model dye. It was found that the kinetic adsorption data followed the pseudo-second-order kinetic model, and the adsorption equilibriums were reached less than 10 min. The isothermal adsorption data were fitted with the Langmuir isotherm model very well, from which the maximum adsorption capacities of the MCCs modified with PDE and PDA were determined to be 101.01 and 142.86 mg/g, respectively. Further investigation showed that the modified MCCs were pH-dependent for adsorption of MB in aqueous solutions. The modified MCCs could be used for removal of MB from an aqueous solution at pH 8, and reused by regeneration in an acidic solution. It was tested that the modified MCCs had a high reusability for removal of MB from aqueous solutions, and still maintained high adsorption capacities even after multiple cycles of desorption–adsorption processes. Hence, the MCCs modified with PDE and PDA could be an effective and efficient approach to removal of cationic dyes from aqueous solutions.  相似文献   

2.
In this study, the adsorption characteristics of crystal violet (CV) and Congo red (CR) dyes from the aqueous solution onto prepared activated carbon were examined. The activated carbon was prepared from wood apple shell by chemical activation with ZnCl2. The parameters studied were the effect of contact time, initial dyes concentration, and pH of solution. The experimental equilibrium data were analyzed and fitted to Langmuir, Freundlich, and Temkin isotherms. The maximum monolayer adsorption capacities of CV and CR dyes were found to be 142.85 and 83.33 mg per gram of prepared activated carbon at 298 K. The kinetic data obtained at different concentrations were analyzed using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. Batch adsorption kinetic studies showed that the adsorption of dyes followed pseudo-second-order kinetics and at four different concentrations of both dyes, indicating that chemisorption is the rate-limiting step. Thermodynamic studies reveal that the removal of dyes from aqueous solution onto activated carbon was a spontaneous, feasible, and endothermic process at a temperature greater than standard equilibrium temperature.  相似文献   

3.
The rose leaf was successfully modified through coating with polypyrrole (PPy) in chemical oxidative route in order to remove Pb(II) and Cd(II) from aqueous media. The rose leaf/polypyrrole (RL/PPy) composites were characterized in terms of morphology, chemical structure, and conductivity properties. The spectrum were obtained from FTIR results which support the formation of RL/PPy composites. FTIR and SEM results indicate that the polypyrrole is completely covered on rose leaf. The conductivity of composite (1.8215 S/cm) was higher than polypyrrole (2.06 × 10?3 S/cm). The metal removal studies were monitored by Ultraviolet Visible Absorption Spectrometer (UV-Vis). The optimum conditions were detected for adsorption by changing some experimental conditions (such as adsorbent dosage, contact time and stirring speed, initial concentration of the metal solutions and pH). Following the determination of the optimum conditions, the results of the metal removal from wastewater studies were performed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Under the optimum conditions, the ICP-OES results obtained for waste water showed the useability of composite for the removal of Pb(II) and Cd(II). The Langmuir and Freundlich models are subjected to adsorption datas. The datas fitted better when by using Freundlich model.  相似文献   

4.
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by a low cost in a routine protocol. Subsequently, this novel material characterization and identification are followed by different techniques such as th eBruner–Emmet–Teller (BET) theory, scanning electron microcopy, and transmission electron microscopy analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.798 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of sunset yellow (SY) and methyl orange (MO). Generally, the influence of variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order and intra-particle diffusion approach. The equilibrium data of the removal strongly follow the Langmuir monolayer adsorption with high adsorption capacity in a short amount of time. This novel adsorbent by small amount (0.01 g) really is applicable for removal of high amount of both dyes (MO and SY) in short time (<18 minutes). Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity for MO 161.29 mg g?1 and for SY 227.27 for 0.005 g of Au-NP-AC.  相似文献   

5.
6.
In this study, clinoptilolite as a natural zeolite which was magnetized using precipitation of maghemite nanoparticles was coated by chitosan and then modified by thylenediamine tetra-acetic acid to add functional groups and its performance in the removal of toxic methylene blue from aqueous solution was investigated. Synthesized magnetic nanocomposite was characterized by VSM, XRD, SEM, and FTIR analyses. The saturation magnetization of the final nanocomposite was obtained as 22.2 emu/g. In addition, the factors affecting adsorption process and its optimization were investigated using response surface methodology and central composite design. Data obtained by different isotherm, adsorption kinetic and thermodynamic models were also studied. The results showed good agreement of these data with the Freundlich isotherm model (R 2 = 0.99), and it was found that adsorption follows the second-order kinetics model (R 2 = 1). Negative values of ΔG and positive values of ΔH obtained from this adsorption thermodynamic study revealed that the methylene blue adsorption process is exothermic and spontaneous. The optimum conditions to ensure maximum adsorption efficiency were determined, and included pH = 5.54, adsorbent amount of 0.03 g, temperature of 31.18 °C, and initial solution concentration of 16.21 mg/l which resulted in a removal efficiency of 99.44%. The results indicated that this nanocomposite can be used as a proper adsorbent for adsorbing methylene blue and other dye contaminants.  相似文献   

7.
Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were chemically modified with 3-aminopyrazole (MWCNTs-f) and applied as an efficient adsorbent to mercury and arsenic adsorption from aqueous solutions. The adsorbents were characterized by FT-IR, EDX, FE-SEM, TGA, and BET. The effects of pH, adsorbent dose, and initial ions concentration on the adsorption efficiency and the optimum conditions were investigated by central composite design. The optimum conditions were obtained at pH 7.6–7.9, adsorbent dose 20 mg, and initial ions concentration 20 ppm. So the maximum adsorption efficiencies in these conditions were 80.5 and 72.4% for the removal of Hg(II) and As(III) by MWCNTs-f, respectively. The quadratic model was used for the analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Also, the pseudo-second-order model has been achieved from the adsorption kinetic studies. Furthermore, the experimental data were well fitted to the Langmuir isotherm and the maximum adsorption capacities obtained were 112 and 133 mg g?1 for the adsorption of Hg(II) and As(III) by MWCNTs-f, respectively. Moreover, a thermodynamic study revealed that the adsorption reactions were spontaneous and endothermic with the increase in randomness. In addition, a desorption study showed the favorable regeneration ability of MWCNTs-f even after three adsorption–desorption cycles. Therefore, the MWCNTs-f adsorbent has good potential for the removal of Hg(II) and As(III) pollutants from aqueous solutions.  相似文献   

8.
In this study, the removal of nitrate using ZnO, MgO, and CeO2 nanoparticles (NPs) modified by humic acid from water was tested. Nanoparticles were modified by humic acid using the microwave-assisted technique and then modified ZnO (Zn–H), modified MgO (Mg–H), and modified CeO2 (Ce–H) were characterized through SEM, EDX, FTIR, and XRD analysis. Several important parameters influencing the removal of nitrate such as contact time, pH, adsorbent dosage and temperature were explored systematically by batch experiments. Isotherm studies were set up with the following optimum conditions: pH?=?5, adsorbent concentration of 1 g L?1, 180 min and 25 °C. The results revealed that the adsorption were best fitted to pseudo-second order and simple Elovich kinetics models. Langmuir, Freundlich and linear adsorption models were fitted to describe adsorption isotherms and constants. The isotherm analysis indicated that the adsorption data can be represented by both Freundlich and linear isotherm models. The maximum adsorption capacity (qm) was obtained at 55.1, 74.2 and 75.8 mg g?1 for Zn–H, Ce–H, and Mg–H, respectively. The thermodynamic parameters such as free energy, enthalpy and entropy of adsorption were obtained. From the thermodynamic parameters, it is suggested that the adsorption of nitrate on modified NPs (MNPs) followed the exothermic and spontaneous processes. The obtained results showed that the MNPs were efficient adsorbents for removing nitrate from aqueous media.  相似文献   

9.
In recent decades, industrial wastewater discharge containing toxic or hazardous manufactured dyes has risen tremendously, creating a serious environmental threat. A new hybrid adsorbent, [email protected]–Mn–Zr synthesized by mixing Fe–Mn–Zr metal oxide composite with polyaniline (PANI), was used to study methyl red (MR) dye removal from aqueous solution. The adsorption process was observed to be influenced by the sonication time, dose of [email protected]–Mn–Zr, and initial concentration of MR dye. At an initial MR dye concentration of 25 mg/L, 0.25 g/L of [email protected]–Mn–Zr dose, 15 min of sonication, and pH 7.0, the maximum MR dye adsorption efficiency of 90.34% was achieved. Kinetic analysis was performed using five different kinetic models, which shows that the pseudo-second-order kinetic model had the best fit among the five models. The Langmuir isotherm best fits the adsorption experiments at pH 7.0, yielding a significant MR dye uptake capacity of 434.78 mgg?1. The most significant adsorption mechanisms that have been observed in uptake of MR dye onto [email protected]–Mn–Zr were electrostatic attraction, π-π bond interactions and hydrogen bonding. Response surface optimization study was performed for optimizing the experimental conditions from which maximum dye removal of 98.19% was obtained at contact time of 12 min, initial MR dye concentration of 15 mg/L and [email protected]–Mn–Zr dose of 0.4 g/L. Use of real wastewater and water samples suggest that there is only 6–19% reduction in the dye removal efficiency as compared to the blank or controlled experiments conducted with deionized water.  相似文献   

10.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

11.
The removal of Cr(VI) ions from aqueous solution by human hair waste is investigated by using UV–Vis spectrophotometer technique. The morphological analysis of the human hair was also investigated by the scanning electron microscopy, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy. The influence of various physicochemical effective parameters such as pH, ionic strength, adsorbent amount, contact time, initial concentration of metal ion on removal of Cr(VI) ions by human hair process was also studied. The optimum conditions for this adsorption process were obtained at pH = 2 and contact time of 150 min while the highest Cr(VI) uptake is recorded for 0.5 g of the adsorbent per 100 ml of solution. Three isotherms models including Langmuir, Freundlich and Temkin were applied to describe the equilibrium data. It was found that the experimental data were well described by Freundlich isothermal model. The maximum adsorption capacity was found to be 11.64 mg g?1.The thermodynamic study data showed that the adsorption process of Cr(VI) on human hair is an endothermic, spontaneous and physisorption reaction. The kinetics of the adsorption process was studied using three kinetics models including Lagergren-first-order, pseudo-second-order and Elovich model. The obtained data are indicated that the adsorption processes of Cr(VI) over human hair could be described by the pseudo-second-order kinetic model.  相似文献   

12.
Recently, nano-zero valent iron (nZVI) has been identified as one of the most promising materials for the removal of a wide range of pharmaceuticals in water. However, nZVI effectiveness in aqueous media is dramatically reduced due to its aggregation and instability. To overcome these problems, castor oil (Ricinus communis Linn.) leaves aqueous extract has been used in this study as a reducing and stabilizing agent to increase the stability of nZVI. The fabricated RCL-nZVI was well characterized using several spectroscopic techniques, e.g., steady-state absorption and fluorescence, SEM, TEM, FTIR, EDS, XRD, XPS, and zeta potential. The green phytosynthesized RCL-nZVI was examined in the adsorptive removal of tetracycline (TC). It was interesting to see that the removal efficiency of TC by RCL-nZVI reached 98% at pH 6 and 25 °C. The efficient removal of TC from the aqueous solution was in accordance with the pseudo-second-order kinetic model and well fitted to Langmuir model with a maximum adsorption capacity of 72.64 mg. g−1. In this study, a plausible removal mechanism was discussed, which primarily involves both adsorption and reduction pathways.  相似文献   

13.
Modified loofah was prepared by a simple chemical graft method to improve its adsorption for cationic dyes. Experimental results showed that the maximum amounts of basic magenta and methylene blue loaded on the modified loofah were 83.5 and 85.5 mg g?1, and that on the unmodified loofah were 22.2 and 33.7 mg g?1, respectively. The adsorption for both dyes could reach equilibrium after 300 min. A pseudo-second-order model is suitable for describing the adsorption and desorption kinetics of both dyes on the modified sorbent. According to the intra-particle diffusion model, sorption and desorption processes for the two dyes both presented two distinct phases and were mainly controlled by intra-particle diffusion. The dye-loaded modified loofah could be regenerated by using the mixture solution of HCl and ethanol (VHCl:Vethanol = 3:2) as eluent. Adsorption in the binary system showed that adsorption of the dyes was depressed by the presence of the other dye, and the two dyes could be removed efficiently when the initial concentrations were lower than 5.0 × 10?5 mol L?1. The Langmuir competitive model was suitable to predict the sorption isotherm in the binary system.  相似文献   

14.
Over 30 million tons of excess sludge is discharged from rural municipal sewage plants annually in China and it is predicted that this figure will keep increasing. However, most of the excess sludge is dumped in landfills except for minor applications. In this study, based on low-cost and recycling waste, the excess sludge was used to adsorb organic dyes from aqueous solution after being directly dewatered. The powdered excess sludge (PES) presents selective adsorption property to cationic dyes. Statics batch adsorption experiments of malachite green (MG) on PES were performed to evaluate the effects of pH, adsorbent dosage, and initial MG concentration. Results revealed that the bio-adsorption equilibrium of MG on the PES can be quickly achieved at 30 min with maximum percentage adsorption of 84% at pH 7, initial dye concentration of 20 mg L?1, and adsorbent dosage of 1.5 g L?1. Moreover, the adsorption kinetics follows a pseudo-second-order pathway, and the equilibrium adsorption data could be described well by the Langmuir isotherm equation. Intra-particle diffusion is not the only rate-controlling step in the entire adsorption process. The adsorption process is endothermic, spontaneous, and random. PES can be used as a low-cost adsorbent for refractory cationic organic dye in effluent.  相似文献   

15.
The removal of orange Telon from aqueous solutions by poly(N-octyl-4-vinylpyridiniumbromide) copolymer was investigated. Batch adsorption experiments were carried out to study the effect of experimental parameters on the orange Telon adsorption equilibrium. The adsorption characteristics of copolymer to ward orange Telon in dilute aqueous solution were followed using UV-Vis spectrophotometry. Adsorption equilibrium was reached within 60 min for 0.03 g of poly(4-vinylpyridine quaternized at 58%. The kinetic of adsorption is best described by a pseudo-second-order model. Results also showed that the equilibrium modeling of orange Telon removal process was described by Langmuir isotherms. The maximum adsorption capacity determined from the Langmuir isotherm was 76.4 mg g? 1. The study of the thermodynamic parameters showed that the adsorption of orange Telon on copolymer is an exothermic process and the randomness decreases at the solid-solution interface during the adsorption of dye on the copolymer.  相似文献   

16.
Summary The novel application of CE using non-aqueous media has been studied for the separation of a range of acidic compound types. This enabled the first quantitative assay by CE employing non-aqueous media to be performed. Separation selectivity manipulation for closely related species was achieved through variation of organic solvent types and composition, ionic strength changes, alteration of pH* values and the addition of cyclodextrin additives soluble in organic solvents. This offers a greater range of possibilities during method development than use of aqueous buffer. The generation of low operating currents permitted rapid, highly efficient and selective separations to be achieved by applying high field strengths across short capillaries. Optimised rinsing and capillary regenerating procedures were devised which allowed highly repeatable separations to be achieved with migration time repeatability below 1% RSD. Use of internal standards also allowed 1% RSD values to be obtained for injection precision. Routine operating effects were assessed and it was observed that stacking effects remain important in non-aqueous CE. Also, optimal separations are obtained when the samples are diluted in the pure solvent used to prepare the electrolyte. The application range of non-aqueous CE was appreciably extended to include acidic drugs, dyes, surfactants and preservatives.  相似文献   

17.
In this paper, rape stalk was modified with citric acid (CA) to prepare copper ion biosorbent. The modified rape stalk (MRS) was characterized by Fourier transforms infrared (FTIR), zeta potential, and thermogravimetric analysis (TGA). The effects of various parameters like initial Cu2+ concentration, contact time, initial pH, and temperature on adsorption capacity were studied. The adsorption capacity of MRS at 298 K was 69.84 mg/g, far higher than 18.24 mg/g for native rape stalk (NRS). The adsorption mechanism was also evaluated in terms of kinetics and thermodynamics. The adsorption equilibrium data was well described by the Langmuir isotherm model. The adsorption process followed the pseudo-second-order rate kinetics. Thermodynamic study showed spontaneous and endothermic nature of the adsorption process. The ion exchange of the adsorption mechanism was affirmed. MRS could be a potentially low-cost and green adsorbent for removal of Cu2+ from aqueous solution.  相似文献   

18.
The removal of Hg(II) ions from aqueous solution by adsorption onto cross-linked polymeric beads of carboxymethyl cellulose (CMC) and sodium alginate was studied at fixed pH (6) and room temperature 28 ± 0.2°C. The cross-linked polymeric beads were characterized by FTIR spectra. Sorption capacity of the polymer for the mercury ions was investigated in aqueous media consisting different amounts of mercury ions (2.5 to 100 mg dm?3) and at different pH values (2 to 8). Adsorption behavior of Hg(II) ions could be modeled using both the Langmuir and Freundlich isotherms. The dynamic nature of adsorption was quantified in terms of several kinetic constants such as rate constants for adsorption (k1) and Lagergreen rate constant (Kad). The influence of various experimental parameters such as effect of pH, contact time, solid-to-liquid ratio, salt effect, and temperature effect etc. were investigated on the adsorption of Hg(II) ions.  相似文献   

19.
We fabricated a new MnO2-loaded biocomposite based on microcrystalline cellulose (MCC–MnO2) by an in situ synthesis method and investigated its adsorption behavior and mechanism for Pb2+ removal from aqueous medium. As-prepared MCC–MnO2 was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses. The effects of pH value, initial Pb2+ concentration, contact time, and solution temperature on the uptake of Pb2+ onto MCC–MnO2 were investigated using a batch system. Adsorption equilibrium could be achieved in 3 h for various studied initial concentrations, and a pseudo-second-order model could fit the adsorption behavior well. The equilibrium data could be well described by the Langmuir isotherm model, and the maximum monolayer adsorption capacity of MCC–MnO2 (with 7.98% MnO2 loading) for Pb2+ was estimated to be 247.5 mg/g at 313 K. Thermodynamic studies indicated a spontaneous and endothermic adsorption process. X-ray photoelectron spectroscopy (XPS) was used to analyze the adsorption mechanism, revealing that the chemical speciation of Pb2+ on MCC–MnO2 was similar to the compound PbO. Moreover, no variations in the valence of Mn were observed after adsorbing Pb2+. The regeneration study showed that the adsorption capacity retained about 89.6% of its initial value at the fifth sequential regeneration cycle, indicating that this material is an efficient and renewable hybrid adsorbent for Pb2+ removal.  相似文献   

20.
The uptake of cesium from aqueous solutions (pH 5) using titanium phosphates was investigated in the absence and presence of background electrolyte (0.1 M NaNO3) using a batch technique. The determination of cesium was performed by gamma spectroscopy using 137Cs as tracer. The obtained sorption isotherms could be satisfactorily reproduced by a Langmuir sorption equation. The maximum uptake capacity values (q max) calculated fitting the experimental data by this equation were 167 and 118 mg/g for solutions of initial pH 5 in the absence and presence of background electrolyte. Kinetics data obtained at 293, 308 and 323 K could satisfactorily reproduced by the pseudo-second order equation. It was demonstrated that the new synthesized materials can remove considerable amounts of cesium from aqueous solutions and ion exchange is considered to be the principal mechanism for cesium removal. Toxicity characteristic leaching procedure and desorption tests provided data about the application of the sorbents in environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号