共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided. 相似文献
2.
The importance of tin oxide (SnO(x)) to the efficiency of CO(2) reduction on Sn was evaluated by comparing the activity of Sn electrodes that had been subjected to different pre-electrolysis treatments. In aqueous NaHCO(3) solution saturated with CO(2), a Sn electrode with a native SnO(x) layer exhibited potential-dependent CO(2) reduction activity consistent with previously reported activity. In contrast, an electrode etched to expose fresh Sn(0) surface exhibited higher overall current densities but almost exclusive H(2) evolution over the entire 0.5 V range of potentials examined. Subsequently, a thin-film catalyst was prepared by simultaneous electrodeposition of Sn(0) and SnO(x) on a Ti electrode. This catalyst exhibited up to 8-fold higher partial current density and 4-fold higher faradaic efficiency for CO(2) reduction than a Sn electrode with a native SnO(x) layer. Our results implicate the participation of SnO(x) in the CO(2) reduction pathway on Sn electrodes and suggest that metal/metal oxide composite materials are promising catalysts for sustainable fuel synthesis. 相似文献
3.
Power generation through photovoltaics (PV) has been growing at an average rate of 40% per year over the last decade; but has largely been fuelled by conventional Si-based technologies. Such cells involve expensive processing and many alternatives use either toxic, less-abundant and or expensive elements. Kesterite Cu(2)ZnSnS(4) (CZTS) has been identified as a solar energy material composed of both less toxic and more available elements. Power conversion efficiencies of 8.4% (vacuum processing) and 10.1% (non-vacuum processing) from cells constructed using CZTS have been achieved to date. In this article, we review various deposition methods for CZTS thin films and the synthesis of CZTS nanoparticles. Studies of direct relevance to solar cell applications are emphasised and characteristic properties are collated. 相似文献
4.
Hedges DH Richardson DJ Russell DA 《Langmuir : the ACS journal of surfaces and colloids》2004,20(5):1901-1908
Cytochrome c has been immobilized onto functionalized, optically transparent indium tin oxide (ITO) electrodes by covalent and electrostatic techniques. Covalent immobilization was achieved by the formation of a disulfide bond between N-succinimidyl 3-(2-pyridyldithio)propionate-(SPDP-) modified cytochrome c and SPDP-silanized ITO. Additionally, ITO electrodes have been modified with the bifunctional reagent 1,12-dodecanedicarboxylic acid (DDCA), resulting in formation of a carboxylic acid-terminated monolayer. Covalent protein attachment to the DDCA-functionalized ITO was achieved with the cross-linker 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride. Electrostatic attachment of the protein involved ion-pair and hydrogen-bond interactions between the terminating carboxylic acid groups of the DDCA-functionalized ITO and the primary amine groups of the lysine residues of cytochrome c. The electrostatic interaction between the cytochrome c and the functionalized ITO resulted in greater rotational mobility of the protein at the electrode surface, leading to ca. 63% electroactivity, as compared to ca. 41% electroactivity for the covalently immobilized protein. The redox state of the electrostatically bound cytochrome c monolayers could be electrochemically switched between ferric and ferrous forms. Electrochemical control of the bound protein was used to regenerate the biosensing surface following binding of nitric oxide (NO). Ligation of NO with the cytochrome c was monitored by measurement of the change of absorbance intensity at 416 nm. Through application of a negative potential, the cytochrome c was reduced from the ferric to the ferrous form, which led to the removal of the ligated NO. Application of a positive potential regenerated the ferric cytochrome c, enabling multiple repeat measurements of NO. Such electrochemical control of proteins immobilized on transparent electrodes enables the optical biosensing of analyte targets without recourse to exogenous reagents. 相似文献
5.
Yulia Shilyaeva Sergey Gavrilov Larisa Matyna 《Journal of Thermal Analysis and Calorimetry》2014,118(2):937-942
The melting temperature of metal nanostructures embedded in the matrix is an essential thermodynamic characteristic and a key parameter of the processes of their transformation into semiconductor structures. In this work, great attention is paid to the investigation of the behavior of one-dimensional metal nanocrystals near the melting point. For this purpose, the arrays of In, Sn, and Zn nanowires with different diameters have been electrochemically grown in the pores of anodic aluminum oxide (AAO), which is confirmed by the results of the microscopy and the phase X-ray diffraction analysis. The melting of nanowire arrays with different diameters has been investigated by means of differential scanning calorimetry (DSC). Aside from the expected melting temperature decrease, with decreasing the diameter of nanowires, it has been established that the melting peaks of nanostructure arrays have a complex shape that requires detailed elaboration in order to more accurately define the melting temperature. It is shown that the signal waveform while melting depends on geometric parameters of the structure, and the peak being mapped onto the DSC curve is the result of superposition of the melting peaks of nanowires with several characteristic dimensions. For the arrays of In, Sn, and Zn nanowires in AAO, there have been defined the melting temperature values according to the methodology offered, and there has been presented the dependence of the melting temperature decrease on the nanowires' diameter. 相似文献
6.
Sun Duanping Lu Jing Wang Xiangyan Zhang Yuanqing Chen Zuanguang 《Mikrochimica acta》2017,184(9):3487-3496
Microchimica Acta - The authors describe a method for the detection and determination of human liver cancer cells in blood. The cytosensing system consists of a microfabricated chip-based... 相似文献
7.
Electrochemical production of hydrogen from water splitting is a promising process to allow storage of intermittent energies. However, anodic water oxidation, which is a complicated four‐proton, four‐electron transfer process, affects the efficiency of hydrogen generation due to the need to apply large overpotentials. Herein, we synthesized nanosized rhodium(III) oxide by the thermal decomposition of a known rhodium organometallic precursor and characterized it using scanning and transmission electron microscopies, powder X‐ray diffraction, energy‐dispersive X‐ray, diffuse reflectance infrared and Fourier transform infrared spectroscopies, and electrochemical methods. The results showed that the nanosized rhodium oxide is a promising catalyst for water oxidation. 相似文献
8.
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability. 相似文献
9.
A. A. Popovich M. Yu. Maximov P. A. Novikov A. O. Silin D. V. Nazarov A. M. Rumyantsev 《Russian Journal of Applied Chemistry》2016,89(4):679-681
The cyclic stability of thin films (~40 nm) of an anode material based on tin dioxide at charging voltages of 2.5, 1.5, and 0.8 V was studied. The electrodes were prepared on a Picosun R-150 installation using tetraethyltin and remote inductively coupled oxygen plasma. 相似文献
10.
Newayemedhin A. Tegegne Zelalem Abdissa Wendimagegn Mammo Mats R. Andersson Derck Schlettwein Heinrich Schwoerer 《Journal of polymer science. Part A, Polymer chemistry》2018,56(21):1475-1483
A low band gap copolymer, P2TI (Eg = 1.6.eV), with bithiophene as donor and isoindigo as acceptor units is designed and synthesized by the direct arylation polycondensation (DAP) method. Absorbance of the polymer spans from 300 to 780 nm. It exhibits an absorption coefficient (ε) of 96 L/g cm in solution at its maxima. A HOMO level of −5.42 eV and LUMO level of −3.72 eV is measured by square wave voltammetry. ITO-free solar cells fabricated using a P2TI :PCBM71 bulk heterojunction shows a moderate efficiency of 1.02% with a high open circuit voltage of 0.81 V. An intramolecular charge transfer state is found in the relaxation of P2TI in solution, which is generated with a time constant of 2 ps as measured by femtosecond-transient absorption spectroscopy. Charge carriers were generated in <250 fs in P2TI: PCBM71 films. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1475–1483 相似文献
11.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing. Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M. 相似文献
12.
13.
Dufton JT Walsh A Panchmatia PM Peter LM Colombara D Islam MS 《Physical chemistry chemical physics : PCCP》2012,14(20):7229-7233
As the demand for photovoltaics rapidly increases, there is a pressing need for the identification of new visible light absorbing materials for thin-film solar cells that offer similar performance to the current technologies based on CdTe and Cu(In,Ga)Se(2). Metal sulphides are the ideal candidate materials, but their band gaps are usually too large to absorb significant fractions of visible light. However, by combining Cu(+) (low binding energy d(10) band) and Sb(3+)/Bi(3+) (low binding energy s(2) band), the ternary sulphides CuSbS(2) and CuBiS(2) are formed, which have been gathering recent interest for solar cell applications. Using a hybrid density functional theory approach, we calculate the structural and electronic properties of these two materials. Our results highlight the stereochemical activity of the Sb and Bi lone pair electrons, and predict that the formation of hole carriers will occur in the Cu d(10) band and hence will involve oxidation of Cu(I). 相似文献
14.
15.
The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells 总被引:1,自引:0,他引:1
Athapol Kitiyanan 《Journal of solid state chemistry》2005,178(4):1044-1048
The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO2) and titania (TiO2) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380 nm, corresponding to band gap (Eg) around 3.27 eV, which is higher than that of pure component of titania (). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO2. The cell fabricated by 5 μm thick mixed TiO2-ZrO2 electrode gave the short-circuit photocurrent about 13 mA/cm2, open-circuit voltage about 600 mV and the conversion efficiency 5.4%. 相似文献
16.
<正>SnO_2 nanorods were deposited on the Si substrates in an aqueous solution containing both SnCl_4 and CO(NH_2)_2.It is found that different self-assembled patterns of SnO_2 nanorods can be obtained by changing the deposition conditions such as the molar ratio of CO(NH_2)_2 to SnCl_4 and the pretreatment of the substrate.Scattered SnO_2 nanorods,for example,can be changed into flower-like patterns when the molar ratio of CO(NH_2)_2 to SnCl_4 is raised,and well-aligned nanorod arrays can be formed when the pretreatment of the substrate is changed.In addition,some interesting patterns,e.g.tree-like patterns,can also be observed. 相似文献
17.
Jisoo Yoon Taehoon Cho Hyojung Lim Joohoon Kim 《Analytical and bioanalytical chemistry》2016,408(25):7165-7172
18.
Yu Cheng Junwei Zheng Zhenping Wang Liu Liu Ying Wu Jianping Yang 《Mikrochimica acta》2011,173(3-4):529-535
Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1.34?×?105 mol?1·L·s?1. The amperometric method gave a linear range from 2.5?×?10?6 to 1.5?×?10?3 M and a detection limit of 1.0?×?10?6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. Figa
Functionalized gold nanoparticles (Au-NPs) capped with polyoxometalates were prepared by a simple photoreduction technique. The negatively charged capped Au-NPs were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide electrode via the layer-by-layer technique. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate, and excellent catalytic activity. 相似文献
19.
Gold nanoparticle modified indium tin oxide (ITO) film coated glass electrodes were prepared for the first time through direct electrochemical deposition from 0.5 M H2SO4 containing 0.1 mM HAuCl4. The resulting electrode surfaces were characterized with AFM. Cyclic voltammetry and linear sweep voltammetry (LSV) of arsenic(III) on the modified electrodes were performed. After optimization, a LOD of 5 +/- 0.2 ppb was obtained with 60 s deposition at -0.6 V (vs. SCE) in 1 M HNO3 using LSV. 相似文献
20.
Kenji Takahashi Kiyoharu Tadanaga Atsunori Matsuda Akitoshi Hayashi Masahiro Tatsumisago 《Journal of Sol-Gel Science and Technology》2007,43(1):85-91
Polybenzylsilsesquioxane (BnSiO3/2) particles become a supercooled liquid through a heat treatment above the glass transition temperature (T
g) of the particles. Micropatterns of BnSiO3/2 thick films with high transparency were obtained by the electrophoretic deposition of the BnSiO3/2 particles on indium tin oxide (ITO)-coated substrates with a hydrophobic-hydrophilic-patterned surface and subsequent heating
above T
g of the particles. It was found that the control of electrophoretic deposition conditions, in which the amounts of the particles
deposited on the substrates were changed, led to two types of micropatterning processes of the BnSiO3/2 thick films. In the first process, the particles were selectively deposited on the hydrophilic areas after the electrophoretic
deposition. In the second process, the particles were deposited on the whole area of the ITO-coated substrate with hydrophobic-hydrophilic
patterns after the electrophoretic deposition. Due to the difference in wettability of BnSiO3/2 molten liquids between hydrophobic and hydrophilic surfaces, the molten liquids on the hydrophobic areas, which were obtained
by heating above T
g of the particles, migrated toward the hydrophilic areas. In both the processes, convex-shaped BnSiO3/2 micropatterns with high transparency were fabricated only on the hydrophilic areas after a heat treatment above T
g of the particles. 相似文献