首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes of Brooker’s merocyanine dye with α-, β- and γ-cyclodextrin (CD) have been characterized to determine the relative strength and thermodynamics of binding, as well as the effect of binding on the protolytic-photochemical isomerization cycle of the dye. It was found that the dye binds most tightly to β-CD, with a binding equilibrium constant of 430 M?1, in agreement with previous results (Hamasaki et al. J. Incl. Phenom. Mol. Rec. Chem. 13, 349–359 (1992)), while α-CD and γ-CD complexes have a binding constant of approximately 110 M?1 and 70 M?1, respectively, determined using absorbance and fluorescence spectroscopy. The isomerization cycle for the dye in α- and γ-CD complexes was found to be the same as for the free dye. Complexation with β-CD, however, resulted in depressed trans-to-cis photoisomerization in acidic conditions followed by spontaneous cis-to-trans isomerization (with the addition of base). Thermodynamic results also indicated differences between α-CD (ΔS° = ?48 J K?1) and β-CD (ΔS° =  +12 J K?1) complexes. There was no temperature dependence observed for the γ-CD complexes. These results can be justified in terms of the location of the dye molecule within the cyclodextrin cavity for each of the complexes.  相似文献   

2.
The host–guest interaction of tolmetin (TOL) with β-cyclodextrin (β-CD) and the influence of human serum albumin (HSA) on the formation of the inclusion complex were studied by 1D and 2D NMR spectroscopy. The TOL/β-CD inclusion complex formed at a molar ratio of 1:1 with a binding constant value of 2164.5 L·mol?1. Data analysis showed that the addition of 10 μmol·L?1 of HSA weakened the strength of TOL binding to β-CD (K a = 1493 L·mol?1). The interaction of TOL with HSA in the absence and presence of β-CD was studied by analyzing the fluorescence quenching data. The Stern–Volmer quenching constants and the binding constants are found to be smaller in the presence of β-CD, suggesting that β-CD hinders the strong interaction of TOL with HSA by complex formation. Additionally, the presence of β-CD does not induce conformational and microenvironmental changes on HSA.  相似文献   

3.
The equilibrium constants (K) for the inclusion complexation of three kinds of β-cyclodextrins (β-CDs: native β-CD, heptakis(2,6-di-O-methyl)-β-CD, and 6-O-α-d-glucosyl-β-CD) with OH-substituted naphthalenes (2-naphthol, 2,3-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene) were determined from the induced chemical shifts of NMR measurements for inclusion complexes: K = 188–1,250 mol?1 dm3. The modified β-CDs form stable 1:1 inclusion complexes with OH-substituted naphthalenes, and the high stability of inclusion complexes of 2,6-dihydroxynaphthalene having a hydrophobic body and hydrophilic ends is shown. In addition, the structures of inclusion complexes were characterized by 2D ROESY NMR measurements. The differences in the structure of the inclusion complexes were observed for three kinds of naphthol guest molecules. Based on the results, the inclusion abilities enhanced by methylation of the OH groups at the CD rim or the side chain of branched β-CD are discussed.  相似文献   

4.
Fluorescence spectroscopy was used to characterize inclusion compounds between 4-amino-1,8-naphthalimides (ANI) derivatives and different cyclodextrins (CDs). The ANI derivatives employed were N-(12-aminododecyl)-4-amino-1,8-naphthalimide (mono-C12ANI) and N,N′-(1,12-dodecanediyl)bis-4-amino-1,8-naphthalimide (bis-C12ANI). The CDs used here were α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD and HP-γ-CD. The presence of CDs resulted in pronounced blue-shifts in the emission spectra of the ANI derivatives, with increases in emission intensity. This behavior was parallel to that observed for the dyes in apolar solvents, indicating that inclusion complexes were formed between the ANI and the CDs. Mono-C12ANI formed inclusion complexes of 1:1 stoichiometry with all the CDs studied. Complexes with the larger CDs (HP-β-CD, HP-γ-CD and γ-CD) were formed by inclusion of the chromophoric ANI ring system, whereas the smaller CDs (α-CD, HP-α-CD and β-CD) formed complexes with mono-C12ANI by inclusion of the dodecyl chain. Bis-C12ANI formed inclusion complexes of 1:2 stoichiometry with HP-β-CD, HP-γ-CD and γ-CD, but did not form inclusion complexes with α-CD, HP-α-CD and β-CD. The data were treated in the case of the large CDs using a Benesi-Hildebrand like equation, giving the following equilibrium constants: mono-C12ANI:HP-β-CD (K 11 = 50 M?1), mono-C12ANI:HP-γ-CD (K 11 = 180 M?1), bis-C12ANI:HP-β-CD (K 12 = 146 M?2), bis-C12ANI:HP-γ-CD (K 12 = 280 M?2).  相似文献   

5.
The interaction of ginkgolic acid (15:1, GA) with human serum albumin (HSA) was investigated by FT–IR, CD and fluorescence spectroscopic methods as well as molecular modeling. FT–IR and CD spectroscopic showed that complexation with the drug alters the protein’s conformation by a major reduction of α-helix from 54 % (free HSA) to 46–31 % (drug–complex), inducing a partial protein destabilization. Fluorescence emission spectra demonstrated that the fluorescence quenching of HSA by GA was by a static quenching process with binding constants on the order of 105 L·mol?1. The thermodynamic parameters (ΔH = ?28.26 kJ·mol?1, ΔS = 11.55 J·mol?1·K?1) indicate that hydrophobic forces play a leading role in the formation of the GA–HSA complex. The ratio of GA and HSA in the complex is 1:1 and the binding distance between them was calculated as 2.2 nm based on the Förster theory, which indicates that the energy transfer from the tryptophan residue in HSA to GA occurs with high probability. On the other hand, molecular docking studies reveal that GA binds to Site II of HSA (sub-domain IIIA), and it also shows that several amino acids participate in drug–protein complexation, which is stabilized by H-bonding.  相似文献   

6.
The inclusion complexes of β-cyclodextrin (β-CD) with pyrazinamide (PYA) and piperazine (PIZ) have been investigated both in the solid phase by single-crystal X-ray diffraction analysis and in the gas phase by semi-empirical PM3 calculation. In the crystalline phase, the disordered PYA and PIZ molecules are entirely embedded in the β-CD cavity. The PYA pyrazine-centre displaces upwards by 1.15(1) Å from the β-CD plane, whereas the PIZ centre shifts downwards by 0.76(1) Å from the β-CD plane. The inclusion scenario changed in the gas phase. Two inclusion geometries of the PYA molecule are comparatively stable with binding energies of ? 22.28 and ? 25.29 kJ mol? 1: the pyrazine centre shifts upwards by 0.5 Å and downwards by 2.0 Å from the β-CD plane. The PIZ molecule positioning at 2.0 Å below the β-CD plane gives a more stable inclusion complex than does the PYA molecule by 22–25 kJ mol? 1.

Structural distinction of the β-CD–PYA and β-CD–PIZ inclusion complexes in the solid phase (by X-ray crystallography) and gas phase (by PM3 calculation) is a paradigm of the CD conformational flexibility, the induced-fit mechanism and the dynamics of the inclusion process.  相似文献   

7.
We report that 1:1 and 1:2 complexes are formed for 2-hydroxy-9-fluorenone with β-cyclodextrin (β-CD) and that there is an unusual red shift in emission at higher concentrations of β-CD. Between different stoichiometries of the complexes the titrimetric curves for the neutral–anionic equilibria for the guests differ drastically and so do the excited state pK values. The formation of an 1:1 inclusion complex with 2-hydroxy-9-fluorenone (2HFN) as the guest in β-CD with the binding constant (K) of 606.65 L·mol?1 was determined. The ground and excited state pK a values for the neutral–mono-anion equilibrium are not affected by β-CD. Hence the hydroxyl group is considered exposed in the aqueous environment. Two different types of inclusion complexes of 2HFN were observed in β-CD. The 1:2 complex of 2HFN shows a red shift from the 1:1 complex and is less fluorescent that the 1:1 complex. The red shift reveals that the 1:2 complex is more stabilized than the 1:1 complex. The excited state pK a values in both complexes with β-CD are higher that those in aqueous solution. This shows that the complexation makes the molecule less acidic in the S1 state. The β-CD molecule is perceived as not able to encapsulate the 2HFN molecule fully, but the larger rim of the β-CD comes closer to the C=O group. The other half of the 2HFN molecule is encapsulated by the second β-CD molecule and thus there is formation of the 1:2 inclusion complex at higher concentrations of β-CD.  相似文献   

8.
In the presence of small amount of 1-iodo butane (IBu) (0.1 % (v/v)), Naproxen (Nap) displays strong room temperature phosphorescence (RTP) in β-cyclodextrin (β-CD) solution without deoxygenation because of the formation of ternary complex of β-CD, Nap, and IBu. The results indicate that β-CD shows good enantiodiscrimination for (R)-Nap and (S)-Nap. The RTP intensity of (R)-Nap is larger than that of (S)-Nap, the difference being 29.2 %. Both (R)-Nap and (S)-Nap exhibit single exponential phosphorescence decay with different lifetimes of 2.535 ± 0.056 and 1.798 ± 0.076 ms for (R)-Nap and for (S)-Nap, respectively. The corresponding association constants evaluated for (R)-Nap/β-CD/IBu and (S)-Nap/β-CD/IBu ternary complexes are (8.02 ± 0.15) × 103 and (2.50 ± 0.06) × 103 L mol?1, respectively. Thus, the observation of RTP differences between (R)-Nap and (S)-Nap can be attributed to their different ability to form complexes with chiral β-CD.  相似文献   

9.
Crystal structure of β-cyclodextrin (β-CD) complexes with sorbic acid, usually as food preservative, has been determined by single-crystal X-ray diffraction at 113 K. The space group of β-cyclodextrin-sorbic acid complex is P1 with unit cell dimensions of a = 15.284(3) Å, b = 15.402(3) Å, c = 17.981(4) Å, α = 99.67(3)°, β = 112.83(3)°, γ = 102.48(3)° and Z = 1. The result indicates that the β-CD molecules form head-to-head dimers which pack in the intermediate mode. Each dimer contains two guest molecules whose methyl groups are located at the dimer interface while the carboxyl groups protrude from the β-CD primary faces. Water molecules (25.5) are distributed outside the cyclodextrin cavity over 31 sites. Furthermore, nuclear magnetic resonance spectroscopy (1H NMR) has been employed to investigate the inclusion behavior between the host β-CD and guest sorbic acid in aqueous solution. The results obtained enabled us to structurally characterize the β-CD inclusion complex with sorbic acid.  相似文献   

10.
To clarify the effect of cyclodextrin (CD) on the stability of cytochrome c, the thermal denaturation of cytochrome c was measured by differential scanning calorimetry in aqueous solutions of β-CD modified with three substituents: methyl, acetyl, and 2-hydroxylpropyl groups. The midpoint temperature of thermal denaturation decreased with the addition of modified β-CDs, indicating that cytochrome c was destabilized. The destabilization effect of CD depended on the substituent and increased in the order of acetyl>methyl>2-hydroxypropyl. The estimated binding number and binding constant of the modified β-CDs for cytochrome c are 5.0 ± 1.0 and 10.3 ± 2.9 M?1 for methyl-β-CD, 13.8 ± 3.6 and 4.7 ± 1.6 M?1 for acetyl-β-CD, and 2.8 ± 0.9 and 7.0 ± 3.0 M?1 for 2-hydroxypropyl-β-CD. The destabilization effect of acetyl-β-CD is the highest because many CD molecules interact with proteins by the inclusion effect of CD and the inhibition effect of the acetyl group on the hydrogen bond in the secondary structure. In contrast, the stabilization effect of 2-hydroxypropyl-β-CD is the smallest because the steric exclusion of the 2-hydroxypropyl group inhibits the binding of CD to cytochrome c as compared with the smaller structure of the methyl group. Dependency of the destabilization effect on the molar ratio of CD to cytochrome c suggests that the destabilization effect of CD is caused not only by the “direct” interaction of CD with proteins but also by the “indirect” interaction of CD which promotes the solvation of hydrophobic groups by altering the water structure as observed in urea.  相似文献   

11.
In the present study investigated the effect of curcumin (CUR) alpha (α), beta (β) and gamma (γ) cyclodextrin (CD) complexes on its solubility and bioavailability. CUR the active principle of turmeric is a natural antioxidant agent with potent anti-inflammatory activity along with chemotherapeutic and chemopreventive properties. Poor solubility and poor oral bioavailability are the main reasons which preclude CUR use in therapy. Extent of complexation was β-CD complex (82 %) > γ-CD (71 %) > α-CD (65 %). Pulverization method resulted in significant enhancement of CUR (0.002 mg/ml) solubility with CUR α-CD complex (0.364 mg/ml) > CUR β-CD complex (0.186 mg/ml) > CUR γ-CD complex (0.068 mg/ml). Gibbs-free energy and in silico molecular docking studies favour formation of α-CD complex > β-CD complex > γ-CD complex. With reference to CUR, relative bioavailability of CUR α-CD, CUR β-CD and CUR γ-CD complexes were 460, 365 and 99 % respectively. CUR–CD complexes exhibited increased bioavailability with an increase in t½, tmax, Cmax, AUC, Ka, and MRT; and a decrease in Ke, clearance and Vd values. AUC increase was CUR α-CD complex > CUR β-CD complex > CUR γ-CD complex. Significant difference (p < 0.05) was observed between CUR α-CD complex and CUR γ-CD complex by one-way ANOVA and Dunnett’s post hoc test for multiple comparison analysis. Correlation observed between in vitro, in vivo and in silico methods indicates potential of in silico and in vitro methods in CD selection.  相似文献   

12.
The objective of the present investigation was to study the effect of presence of choline dichloride (CDC) in β-cyclodextrin (β-CD) on in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. The molecular inclusion complexes of AF with β-CD coprecipitated with CDC in 1:1 and 1:2 M ratio were prepared using kneading method. In vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes (AF-β-CD-CDC) were carried out. Molecular inclusion complexes of aceclofenac with coprecipitated β-CD showed considerable increase in the dissolution rate in comparison with physical mixture and pure drug in 0.1 N HCl, pH 1.2 and phosphate buffer, pH, 7.4. Inclusion complexes with 1:2 M ratio showed maximum dissolution rate in comparison to other ratios. FTIR spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD-CDC in complexes in solid state. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with the precipitated form of β-CD. The in vitro release from all the formulations was best described by first order kinetics (R 2 = 0.9354 and 0.9268 in 0.1 N HCl and phosphate buffer, respectively) followed by Higuchi release model (R 2 = 0.9029 and 0.9578 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, dissolution of aceclofenac can be enhanced by using the β-CD-CDC coprecipitate as a host molecule.  相似文献   

13.
Water-insoluble β-cyclodextrin polymer (β-CDP) crosslinked by citric acid was obtained with a yield of 65% through an environment friendly synthesis procedure. FT-IR spectra disclosed that the hydroxyl groups of β-CD had reacted and condensated with the carboxyl groups of citric acid, and at the same time the structural characteristics of β-CD were essentially maintained in β-CDP. The β-CDP exhibited notable adsorption capability toward phenol (q max = 13.8 mg g?1) and especially large adsorption capability toward methylene blue (q max = 105 mg g?1). The concentration of methylene blue in water could be reduced to 0.11 mg L?1 by the β-CDP, indicating the excellent adsorption sensitivity of β-CDP toward methylene blue. The adsorption results disclosed that the interior cavity and inclusion property of β-CD were maintained in the synthesized β-CDP.  相似文献   

14.
A poly(amido-amine), PAA, bearing β-CD units in the side chain was synthesized by a polyaddition reaction of 1,4-bis-acryloyl-piperazine with 6-monodeoxy-6-monoamino-β-cyclodextrin (β-CD-NH2). Unlike the simple β-CD-NH2 with a greater basicity constant (log K = 8.60), the polymer revealed an unusual polyelectrolyte behaviour with a lower basicity constant (log K° = 6.29) of the tertiary nitrogen atom, that is strongly dependent on the degree of protonation α of the whole macromolecule. It follows the modified Henderson–Hasselbalch equation with n = 1.75, in a wide α-range. The greater (?46.1 kJ/mol) and the lower (?27.6 kJ/mol) enthalpy (ΔH°) changes of the compounds were in line with the protonation of a primary or a tertiary nitrogen atom. The calorimetric data suggested that the PAA protonation destroyed a packing structure formed by two rigid β-CD side chains interacting head-to-head. The UV spectrophotometric data showed that the PAA exhibits affinity towards the l-ascorbic acid at low pH (pH 2.46) with an isosbestic point at 241 nm and a slight blue shift of the maximum absorption of the ascorbic acid (244 nm) on PAA additions.  相似文献   

15.
The supramolecular interactions between a Bradykinin Potentiating Peptide (BPP10c) and β-cyclodextrin (βCD) have been investigated by using several techniques. These new properties acquired by the inclusion phenomena are important in developing a strategy for pharmaceutical formulation. The BPP10c structural elucidation and its inclusion complex formed have been investigated using Nuclear Magnetic Resonance techniques. The peptide secondary structure was investigated using infrared spectroscopy in solution, Circular Dichroism and NMR. In addition, the thermodynamic parameters of the inclusion process were also evaluated using Isothermal Titration Calorimetry. The results obtained by these physical–chemical techniques suggested a 1:1 complex formed by interaction between the Tryptophan amino acid residue and the βCD cavity. The peptide secondary structure was not substantially modified for the inclusion process. In addition, the inclusion process proved to be spontaneous (ΔGº = ?2.53 kcal mol?1), with an enthalpy reduction (ΔHº = ?3.72 kcal mol?1) and a favored entropic variation (TΔSº = ?1.19 kcal mol?1).  相似文献   

16.
In this study β-cyclodextrin (β-CD) was used to improve usnic acid (UA) solubility and the inclusion complex (UA:β-CD) was incorporated into liposomes in order to produce a targeted drug delivery system for exploiting the antimycobacterial activity of UA. A phase-solubility assay of UA in β-CD at pH 7.4 was performed. An apparent stability constant of K1:1 = 234.5 M?1 and a complexation efficiency of 0.005 was calculated. In the presence of 16 mM of β-CD the solubility of UA (7.3 μg/mL) increased more than 5-fold. The UA:β-CD complex was prepared using the freeze-drying technique and characterized through infrared and 1HNMR spectroscopy, X-ray diffraction and thermal analyses. The UA:β-CD inclusion complex presented IR spectral modifications when compared with UA and β-CD spectra. 1HNMR spectrum of UA:β-CD inclusion complex showed significant chemical shifts in proton H5 located inside the cavity of β-CD (Δδ = 0.127 ppm), suggesting that phenyl ring moiety of UA would be expected to be included within the β-CD cavity, interacting with the H-5 proton. A change in UA from its crystalline to amorphous form was observed on X-ray, suggesting the formation of a drug inclusion complex. DSC analysis showed the disappearance of the UA fusion peak UA:βCD complex. No differences between the antimicrobial activity of free UA and UA:βCD were found, supporting the hypothesis that the complexation with cyclodextrin did not interfere with drug activity. Liposomes containing UA:βCD were prepared using hydration of a thin lipid film method with subsequent sonication. Formulations of liposomes containing UA:βCD exhibited a drug encapsulation efficiency of 99.5% and remained stable for four months in a suspension form. Interestingly, the encapsulation of UA:βCD into the liposomes resulted in a modulation of in vitro kinetics of release of UA. Indeed, liposomes containing UA:β-CD presented a more prolonged release profile of free usnic acid compared to usnic acid-loaded liposomes.  相似文献   

17.
Understanding the interactions of cyclodextrins (CD) and cucurbit[n]uril (CB[n]) hosts with a variety of guest molecules following their encapsulation within the cavity of these macrocycles have become increasingly important in the recent years. The electronic charge distribution and the cavity dimension are some of the key factors those govern their interactions with cations or neutral guests. In the present work the molecular electrostatic potential (MESP) topography has been utilized to obtain the ‘effective’ cavity diameter and height of CB[n] (n = 6–8) homologues and 8 conformers each of α-, β- and γ-CD. It has been shown that the shape of CD cavity be it cone- or barrel-like stems from the hydrogen bonding patterns within primary hydroxyl groups. The width of CB[7] is comparable to the β-CD conformer that possesses either O6H–O5′ or intraglucose O6H–O5 interactions. The cavity diameters of α- and γ-CD are predicted to be respectively, 1.0 and 1.5 Å larger than CB[6] and CB[8] hosts. MESP topography reveals that the cavities of CB[n] are less hydrophilic with largely hydrophilic portals as compared to CD hosts. Cremer–Pople puckering parameters were derived for all the CD conformers and CB[n]. It has been demonstrated that the clockwise and anticlockwise hydrogen bonding patterns in the lower as well as upper rims of different CD conformers are less distorted and exhibit a little deviation from the °C3 chair conformation of α-d-glucopyranose constituting monomeric unit of CD.  相似文献   

18.
The present work describes the preparation and characterization of inclusion systems involving β-CD and the silver(I) nimesulide coordination complex (Ag-NMS), prepared by kneading (K) and co-evaporation (CE) methods. Solid state characterization by DSC, XRD and IR vibrational spectroscopic measurements provided remarkable evidences of the formation of true inclusion systems. Solution measurements provided information about the inclusion mode. The UV–Vis spectroscopy was used to obtain the association constants by the Scatchard method, and the value obtained was 370 ± 2 L mol?1. The 1H NMR spectroscopic measurements indicate a total inclusion of the guest into the cavity. A 2D NOESY experiment was carried out for the inclusion complex. The spectrum shows that hydrogens 3–6 of the cyclodextrin clearly correlate with the protons of the phenoxy ring of nimesulide in the Ag-NMS coordination compound, which confirms the formation of the inclusion complex. The antibacterial activities of the Ag-NMS and CE-[(Ag-NMS)·β-CD] inclusion system were evaluated by the well diffusion method over Escherichia coli and Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) pathogenic bacterial strains. The observed data shows the significant antibacterial activity of the Ag-NMS coordination complex, and no activity for the inclusion complex under the same considered conditions.  相似文献   

19.
The aim of this study was to investigate the effect of β-cyclodextrin (β-CD) on the solubility and dissolution rate of meloxicam. The methods that were employed to prepare meloxicam–β-cyclodextrin complexes were physical mixture, kneaded dispersion, and spray drying. Spray drying method was found to be the best to form a true inclusion complex. Complexes were characterized by thermal analysis, X-ray diffractometry (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The apparent stability constant of the complex, K c, calculated from the slope and intercept of the AL solubility diagram was found to be 429.73, 259.96, 183.31, and 36.50 L mol?1 at pH 2, 3, 6.5, and 10.3, respectively. The dissolution rate of meloxicam from the complexes was higher than from meloxicam alone. Molecular modeling was also used to investigate the interaction between meloxicam and β-CD. The dominant driving force for the complexation was evidently Van der Waals force with very little electrostatic contribution.  相似文献   

20.
The complexation behaviors of acridine red (AR), neutral red (NR) and rhodamine B (RhB) dye guest molecules by three kinds of supramolecular hosts, including β-cyclodextrin (β-CD), calix[4]arene tetrasulfonate (C4AS) and cucurbit[7]uril (CB[7]), have been investigated by means of fluorescence spectra in aqueous citrate buffer solution (pH 6.0). The results obtained show that the three hosts, possessing different types of cavity, lead to various complexation-induced fluorescence of dye guests, and present different binding ability and molecular selectivity. The complexation stability constants decrease in the order of NR > AR > RhB for C4AS and CB[7] hosts, while in the order of RhB > AR > NR for β-CD host. Particularly, CB[7] displays the strongest binding ability with NR (K S = 33300 M? 1), and provides the molecular selectivity of 4.8 for NR/AR pairs. Although the binding ability of C4AS for present dye guests is weaker than CB[7], but the molecular selectivity of the two hosts are nearly equivalent. β-CD shows stronger binding ability with RhB (K S = 5880 M? 1) as comparison with CB[7] and C4AS. Furthermore, the solvent effects and salt effects during the course of complexation have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号