共查询到20条相似文献,搜索用时 15 毫秒
1.
Ju Min Kim Chongyoup Kim Changkwon Chung Kyung Hyun Ahn Seung Jong Lee 《Rheologica Acta》2005,44(6):600-613
The effect of flow conditions on the negative wake generation (longitudinal velocity overshoot behind a cylinder in the viscoelastic fluid flow along the centerline) has been investigated. FENE-CR model that predicts constant shear viscosity and controlled extensional viscosity was considered as a constitutive equation. The discrete elastic viscous split stress-G/streamline upwind Petrov–Galerkin (DEVSS-G/SUPG) formulation was employed and the high-resolution solutions were obtained with an efficient iterative solver based on the incomplete LU(0)-type preconditioner and BiCGSTAB. We found that the negative wake generation was more obvious in uniform flow conditions than in Poiseuille flow, which suggests that the experimentally unrevealed negative wake generation of Boger fluids could be partially attributed to the geometrical effect of Poiseuille flow. The negative wake generation was more discernable at low extensibility and high value of viscosity ratio, which agrees well with the previous studies. In addition, we could observe an undershoot phenomenon in Poisseuille flow condition, which has never been reported. 相似文献
2.
The steady mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder in a stream flowing vertically upwards is numerically studied for both cases of heated and cooled cylinders. The governing partial differential equations are transformed into dimensionless forms using an appropriate transformation and then solved numerically using the Keller-box method. The comparison between the solutions obtained and those for a Newtonian fluid is found to be very good. Effects of the mixed convection and elasticity parameters on the skin friction and heat transfer coefficients for a fluid having the Prandtl number equal to one are also discussed. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point. However, for a sufficiently cold cylinder there will not be a boundary layer. 相似文献
3.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia. 相似文献
4.
David O. Olagunju 《International Journal of Non》2011,46(1):73-78
A thin filament model is used to analyze the extensional flow of a viscoelastic thread governed by the FENE-CR model. The problem is solved numerically by finite differences using a third-order upwind scheme in space and a second order Runge-Kutta scheme in time. The behavior of the filament is controlled by the competing effects of surface tension and axial normal stresses which are characterized in terms of three-dimensional groups, the Deborah number De, the extensibility parameter L and the capillary number Ca. Surface tension has a destabilizing effect causing the filament to thin in the mid-section leading to a rupture. On the other hand normal stresses tend to stabilize the filament. If axial normal stresses are sufficiently large the filament deforms almost uniaxially due to strain hardening. 相似文献
5.
6.
This work addresses the conjugate heat transfer of a simplified PTT fluid flowing past an unbounded sphere in the Stokes regime (Re = 0.01). The problem is numerically solved with the finite-volume method assuming axisymmetry, absence of natural convection and constant physical properties. The sphere generates heat at a constant and uniform rate, and the analysis is conducted for a range of Deborah (0 ≤ De ≤ 100), Prandtl (100 ≤ Pr ≤ 105) and Brinkman (0 ≤ Br ≤ 100) numbers, in the presence or absence of thermal contact resistance at the solid–fluid interface and for different conductivity ratios (0.1 ≤ κ ≤ 10). The drag coefficient shows a monotonic decrease with De, whereas the normalized stresses on the sphere surface and in the wake first increase and then decrease with De. A negative wake was observed for the two solvent viscosity ratios tested (β = 0.1 and 0.5), being more intense for the more elastic fluid. In the absence of viscous dissipation, the average Nusselt number starts to decrease with De after an initial increase. Heat transfer enhancement relative to an equivalent Newtonian fluid was observed for the whole range of conditions tested. The dimensionless temperature of the sphere decreases and becomes more homogeneous when its thermal conductivity increases in relation to the conductivity of the fluid, although small changes are observed in the Nusselt number. The thermal contact resistance at the interface increases the average temperature of the sphere, without affecting significantly the shape of the temperature profiles inside the sphere. When viscous dissipation is considered, significant changes are observed in the heat transfer process as Br increases. Overall, a simplified PTT fluid can moderately enhance heat transfer compared to a Newtonian fluid, but increasing De does not necessarily improve heat exchange. 相似文献
7.
8.
Experimental investigation of viscoelastic flow past a cylinder is conducted for a polyisobutylene-based polymer solution.
High-image-density particle image velocimetry is utilized to quantitatively determine the spatial features of elastic wake
instabilities. The viscoelastic flow bifurcates from steady two-dimensional flow to steady three-dimensional flow for values
of the Deborah number (dimensionless flow rate) greater than a critical value. These hydroelastic flow transitions are manifested
in the form of three-dimensional cells spaced periodically along the axis of the cylinder. The elastic flow structures do
not exist in the Newtonian counterpart of creeping flow past a cylinder.
Received: 7 October 1998 / Accepted: 22 April 1999 相似文献
9.
Oscar M. Coronado Dhruv Arora Marek Behr Matteo Pasquali 《ournal of non Newtonian Fluid Mechanics》2006,140(1-3):132
A new Galerkin/Least-Squares (GLS) stabilized finite element method is presented for computing viscoelastic flows of complex fluids described by the conformation tensor; it extends the well-established GLS method for computing flows of incompressible Newtonian fluids. GLS methods are attractive for large-scale computations because they yield linear systems that can be solved easily with iterative solvers (e.g., the Generalized Minimum Residual method) and because they allow simple combinations of interpolation functions that can be conveniently and efficiently implemented on modern distributed-memory cache-based clusters.Like other state-of-the-art methods for computing viscoelastic flows (e.g., DEVSS-TG/SUPG), the new GLS method introduces a separate variable to represent the velocity gradient; with the aid of this variable, the conservation equations of mass, momentum, conformation, and the definition of velocity gradient are converted into a set of first-order partial differential equations in four unknown fields—pressure, velocity, conformation, and velocity gradient. The unknown fields are represented by low-order (continuous piecewise linear or bilinear) finite element basis functions.The method is applied to the Oldroyd-B constitutive equation and is tested in two benchmark problems—flow in a planar channel and flow past a cylinder in a channel. Results show that (1) the mesh-convergence rate of GLS is comparable to the DEVSS-TG/SUPG method; (2) the LS stabilization permits using equal-order basis functions for all fields; (3) GLS handles effectively the advective terms in the evolution equation of the conformation tensor; and (4) GLS yields accurate results at lower computational costs than DEVSS-type methods. 相似文献
10.
11.
The steady flow of generalized Newtonian fluid around a stationary cylinder placed between two parallel plates was studied numerically. Finite volume method was applied to solve the momentum equations along with the continuity equation and the Power law rheological model within the laminar flow regime for a range of the Reynolds number Re and the Power law index n values. The values of the Reynolds number, based on physical and rheological properties, cylinder radius and bulk velocity, were varied between 0.0001≤Re≤10, while the Power law index values mapped the 0.50≤n≤1.50 range, allowing for the investigation of both shear-thinning and shear-thickening effects at the creeping as well as slowly moving fluid flow conditions. We report accurate results of a systematic study with a focus on the most important characteristics of fluid flow past circular cylinder. It is shown that for the creeping flow regime there exist finite sized redevelopment length, drag and loss coefficient. Last but not least, the present numerical results indicate that the shear-thinning viscous behaviour decreases the onset of flow separation. 相似文献
12.
13.
It was demonstrated by simulation in our previous study that both the normal stress and its gradient are responsible for the negative wake generation (overshoot in the axial velocity) and streamline shifting. Extensional properties of the fluids dominate the generation of the negative wake, while other factors strengthen or weaken the formation of velocity overshoot. In this study, the criteria for the negative wake generation are discussed in detail for various fluid models, including the PTT, the FENE-CR, the FENE-P, and the Giesekus models. With the FENE-CR fluid, it is easier to generate negative wake than with the FENE-P fluid. This confirms that the constant shear viscosity FENE-CR fluid enhances the velocity overshoot, and that the shear-thinning viscosity FENE-P fluid delays the negative wake generation. The Giesekus fluid has a similar behaviour to the PTT fluid with regarding to the critical conditions of negative wake generation when appropriate fluid parameters are selected. The mechanism of wall proximity in enhancing the negative wake generation is also demonstrated with the analysis for the first time. 相似文献
14.
Changkwon Chung Kyung Hyun Ahn Seung Jong Lee 《ournal of non Newtonian Fluid Mechanics》2009,162(1-3):38-44
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications. 相似文献
15.
This study summarises some new characteristics of the fluid flow over a confined circular cylinder at low Reynolds numbers. Results from both two- and three-dimensional direct numerical simulations are presented at blockage ratio between 0.1 and 0.9 and Reynolds number between 120 and 500. Floquet stability analysis of selected cases will also be presented. From the two-dimensional simulations, it is found that the fluctuating lift forces decreases with blockage ratio and becomes zero (where the flow is steady) at blockage ratio of approximately 0.7–0.8. Upon further increasing the blockage ratio to 0.9, the simulations show a dramatic increase in the fluctuating lift forces, nearly an order of magnitude greater than previously reported for an unconfined cylinder flow. It is also found that for blockage ratio of 0.5, there is a long term two-dimensional instability that becomes more prominent with increasing Reynolds number. This instability has a time scale of approximately 105 time units () at Reynolds number of 500. In addition, the transition between two- and three-dimensional flow at blockage ratios up to 0.5 is investigated. It is shown that the transition Reynolds number decreases with increasing blockage ratio. At high blockage ratio of 0.5, as we increase the Reynolds number, the transition to three-dimensional flow is shown to go from unsteady two-dimensional to steady three-dimensional before transitioning to unsteady three-dimensional flow. 相似文献
16.
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Kairmain vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained. 相似文献
17.
This study investigates the flow past a confined circular cylinder built into a narrow rectangular duct with a Reynolds number
range of 1,500 ≤ Re
d
≤ 6,150, by employing the particle image velocimetry technique. In order to better explain the 3-D flow behaviour in the
juncture regions of the lower and upper plates and the cylinder, respectively, as well as the dynamics of the horseshoe vortex
system, both time-averaged and instantaneous flow data are presented for regions upstream and downstream of the cylinder.
The size, intensity and interaction of the vortex systems vary substantially with the Reynolds number. Although the narrow
rectangular duct with a single built-in cylinder is a geometrically symmetrical arrrangement, instantaneous flow data have
revealed that the flow structures in both the lower and upper plate–cylinder junction regions are not symmetrical with respect
to the centreline of the flow passage. The vortical flow structures obtained in side-view planes become dominant sometimes
in the lower juncture region and sometimes in the upper juncture region in unsteady mode. 相似文献
18.
Elastic flow transitions in viscoelastic flow past a square cavity adjacent to a channel are reported. The critical conditions for the onset of flow transitions and the qualitative and quantitative characterization of the secondary flows generated by the instability have been examined using streakline photography and instantaneous pressure measurements. Cellular type of instabilities inside the cavity is observed for flow rates beyond a critical value. Small and large scale eddies are observed at high flow rates. The flow inside the cavity and in the channel upstream and downstream of the cavity becomes weakly time-dependent for high flow rates. 相似文献
19.
We derive a class of thermodynamically consistent variants of Maxwell/Oldroyd-B type models for incompressible viscoelastic fluids. In particular, we study the models that allow one to consider temperature dependent material coefficients. This naturally calls for the formulation of a temperature evolution equation that would accompany the evolution equations for the mechanical quantities. The evolution equation for the temperature is explicitly formulated, and it is shown to be consistent with the laws of thermodynamics and the evolution equations for the mechanical quantities. The temperature evolution equation contains terms that are ignored or even not thought of in most of the practically oriented (computational) works dealing with this class of fluids. The impact of the additional terms in the temperature evolution equation on the flow dynamics is documented by the solution of simple initial/boundary value problems. 相似文献
20.
This paper is concerned with the flow of a visco-elastic liquid through a rectangular channel containing a cylindrical obstruction placed either in a symmetric or asymmetric position with respect to the centre of the channel. Numerical predictions of the flow are obtained using a well established finite element Galerkin mixed formulation. The influence of elasticity on the streamline pattern is found to be negligible, and one only observes changes due to different geometries, i.e. relative positions of cylinder and channel. However, both elasticity and a variable viscosity are found to have significant effects on the forces exerted on the cylinder. 相似文献