首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E-4,4'-bis[di(p-anisyl)amino]stilbene cation is a class-III mixed-valence species with electronic coupling comparable to that in its biphenyl-bridged analogue, whereas its tolane-bridged analogue belongs to class II.  相似文献   

2.
The remarkably stable SbF(6)(-) salts of the radical cations of bithiophene 1(2T) and terthiophene 1(3T), completely surrounded by bicyclo[2.2.2]octene (BCO) units, were obtained by one-electron oxidation of the neutral precursors with NO(+)SbF(6)(-), and their solid-state structures were determined by X-ray crystallography. In these radical cations, the presence of quinoidal character was apparent, as shown by the increased planarity and by comparison of the bond lengths with those of the neutral precursors. The shortest intermolecular pi-pi distances in the crystal structure of 1(2T)(*)(+)SbF(6)(-) (distance between two sp(2) carbon atoms, 4.89 A) and 1(3T)(*)(+)SbF(6)(-) (distance between an sp(2) carbon and a sulfur atom, 3.58 A) were found to be longer than the sums of the van der Waals radii of the corresponding atoms. In accord with this, no apparent change was observed in ESR and UV-vis-NIR spectra of solutions of 1(2T)(*)(+) and 1(3T)(*)(+) upon lowering the temperature, indicating that the pi- (or sigma-) dimer formation is inhibited in solution as well as in the solid state. The dications 1(2T)(2+) and 1(3T)(2+) were generated with the stronger oxidant SbF(5) in CH(2)Cl(2) at -40 degrees C and characterized by NMR spectroscopy. In the (1)H NMR spectra, two conformers were observed for each dication of both 1(2T)(2+) (transoid (t) and cisoid (c)) and 1(3T)(2+) (t,t and c,t) at room temperature due to the high rotational barrier around the inter-ring bond(s) between thiophene rings, which was caused by the enhanced double bond character of these bonds following two-electron oxidation. This is supported by DFT calculations (B3LYP/6-31G(d)), which predicted the rotational barriers in the dications of unsubstituted bithiophene and terthiophene to be 27.6 and 22.9 kcal mol(-)(1), respectively. In the case of quaterthiophene and sexithiophene surrounded by BCO frameworks 1(4T) and 1(6T), oxidation with even one molar equivalent of NO(+)SbF(6)(-) afforded the dication salts 1(4T)(2+)2SbF(6)(-) and 1(6T)(2+)2SbF(6)(-), which were isolated as stable single crystals and allowed the X-ray crystallography. In their crystal structures, the cationic pi-systems became planar again due to the great contribution of quinoidal resonance structures, and the pi-systems, which were arrayed in a parallel geometry, were also segregated by the steric effect of BCO units. The degree and tendency of changes in the bond lengths of thiophene rings of 1(4T)(2+) and 1(6T)(2+) as compared with neutral precursors were similar to those of 1(2T)(*)(+)SbF(6)(-) and 1(3T)(*)(+)SbF(6)(-), respectively, implying that the contribution of quinoidal character is modulated by the amount of positive charge per thiophene unit.  相似文献   

3.
Hirst ES  Wang F  Jasti R 《Organic letters》2011,13(23):6220-6223
The [5.7](n)cyclacenes represent a novel class of all sp(2)-hybridized carbon structures. In contrast to the isomeric [n]cyclacenes, [5.7](n)cyclacenes are predicted at the B3LYP/6-31G* level of theory to have stable, closed-shell singlet ground state configurations. Predicted geometries, electronic structures, band gaps, nucleus-independent chemical shift (NICS) values, and strain energies for this new family of cyclic conjugated molecules are presented.  相似文献   

4.
Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt(II)(NH(3))(2)(μ-OAc)(2)Pt(II)(NH(3))(2)](NO(3))(2), [1](NO(3))(2), with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species cis-[XPt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(2)X](NO(3))(2), where X is Cl in [2](NO(3))(2) or Br in [3](NO(3))(2), respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈2.6 ?) Pt-Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt-X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of (1)H, (13)C, (14)N, and (195)Pt NMR spectroscopy was used to characterize [1](2+)-[3](2+) in solution. All resonances shift downfield upon oxidation of [1](2+) to [2](2+) and [3](2+). For the platinum(III) complexes, the (14)N and (195)Pt resonances exhibit decreased line widths by comparison to those of [1](2+). Density functional theory calculations suggest that the decrease in the (14)N line width arises from a diminished electric field gradient at the (14)N nuclei in the higher valent compounds. The oxidation of [1](NO(3))(2) with the alternative oxidizing agent bis(trifluoroacetoxy)iodobenzene affords the novel tetranuclear complex cis-[(O(2)CCF(3))Pt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(μ-NH(2))](2)(NO(3))(4), [4](NO(3))(4), also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed.  相似文献   

5.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

6.
Fluorene 1 fully annelated with bicyclo[2.2.2]octene units was newly synthesized and oxidized to stable cationic species. The structure of radical cation salt 1(.+)SbCl(6)(-) was determined by X-ray crystallography, while the first fluorene dication 1(2+) was characterized by (1)H and (13)C NMR at -80 degrees C. Combined with the results of theoretical calculations, an important contribution of a quinoidal structure to the resonance hybrid was demonstrated in both 1(.+) and 1(2+). [structure: see text]  相似文献   

7.
Two previously reported compounds [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)] (Cotton, F. A.; Liu, C. Y.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42, 4619), in which [Mo(2)] is an abbreviation for the quadruply bonded Mo(2)(4+) unit embraced by three (p-anisyl)NC(H)N(p-anisyl) anions and M = Zn (1) or Co (2), have been chemically oxidized. One-electron oxidation products [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)](PF(6)) (3, M = Zn; 4, M = Co) and the two-electron oxidation product [Mo(2)](CH(3)O)(2)Zn(CH(3)O)(OH)[Mo(2)](PF(6))(2) (5) have been isolated and structurally characterized. As expected, oxidations occur at the dimolybdenum units. The mono-charged cations in 3 and 4 have asymmetric molecular structures with two distinct [Mo(2)] units. In each case, one of the [Mo(2)] units has a lengthened Mo-Mo bond distance of 2.151[1] A, as expected for one-electron oxidation, whereas the other remains unchanged at 2.115[1] A. These correspond to bond orders of 3.5 (sigma(2)pi(4)delta(1)) and 4.0 (sigma(2)pi(4)delta(2)), respectively. The crystallographic results thus show unambiguously that in the crystalline state, the mixed-valence compounds (3 and 4) are electronically localized and the unpaired electron is trapped on one [Mo(2)] unit. These results are supported by the EPR spectra. The doubly oxidized compound 5 has two equivalent [Mo(2)] units, both with a Mo-Mo bond distance of 2.149[1] A. EPR and magnetic susceptibility measurements for 5 indicate that there is no significant ferromagnetic or antiferromagnetic spin coupling and the species is valence-trapped.  相似文献   

8.
We studied the electronic and geometrical structure of the [Ti, O, H](0,+) species, using large basis sets and both single-reference coupled cluster and multireference configuration interaction methodologies. The electronic structure of HTiO(0,+) is interpreted qualitatively in terms of a hydrogen atom bonding to TiO(0,+), while the structure of TiOH(0,+) is interpreted in terms of Ti(+,2+) bonding to OH(-). Potential energy profiles are reported as functions of the Ti-OH and H-TiO bond lengths, and of the H-Ti-O angle. For a total of 33 stationary points on the potential energy surfaces, we report absolute energies, geometries, and harmonic frequencies. For the neutral species, dipole moments are also given.  相似文献   

9.
The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions.  相似文献   

10.
The mononuclear macrocyclic complexes [Au(I)([9]aneS2O)2]BF4 x MeCN 1a, [Au(II)([9]aneS2O)2](BF4)2 x 2 MeCN 2a, and [Au(III)([9]aneS2O)2](ClO4)6(H5O2)(H3O)2 3 ([9]aneS2O = 1-oxa-4,7-dithiacyclononane) have been prepared and structurally characterized by single crystal X-ray crystallography. The oxidation of [Au([9]aneS2O)2](+) to [Au([9]aneS2O)2](2+) involves a significant reorganization of the co-ordination sphere from a distorted tetrahedral geometry in [Au([9]aneS2O)2](+) [Au-S 2.3363(12), 2.3877(12), 2.6630(11), 2.7597(13) A] to a distorted square-planar co-ordination geometry in [Au([9]aneS2O)2](2+). The O-donors in [Au([9]aneS2O)2](2+) occupy the axial positions about the Au(II) center [Au...O = 2.718(2) A] with the S-donors occupying the equatorial plane [Au-S 2.428(8) and 2.484(8) A]. [Au([9]aneS2O)2](3+) shows a co-ordination sphere similar to that of [Au([9]aneS2O)2](2+) but with significantly shorter axial Au...O interactions [2.688(2) A] and equatorial Au-S bond lengths [2.340(4) and 2.355(6) A]. The cyclic voltammogram of 1 in MeCN (0.2 M NBu4PF6, 253 K) at a scan rate of 100 mV s(-1) shows an oxidation process at E(p)(a) = +0.74 V and a reduction process at E(p)(c) = +0.41 V versus Fc(+)/Fc assigned to the two-electron Au(III/I) couple and a second reduction process at E(p)(c) = +0.19 V assigned to the Au(I/0) couple. This electrochemical assignment is confirmed by coulometric and UV-vis spectroelectrochemical measurements. Multifrequency EPR studies of the mononuclear Au(II) complex [Au([9]aneS2O)2](2+) in a fluid solution at X-band and as frozen solutions at L-, S-, X-, K-, and Q-band reveal g(iso) = 2.0182 and A(iso) = -44 x 10(-4) cm(-1); g(xx) = 2.010, g(yy) = 2.006, g(zz) = 2.037; A(xx) = -47 x 10(-4) cm(-1), A(yy) = -47 x 10(-4) cm(-1), A(zz) = -47 x 10(-4) cm(-1); P(xx) = -18 x 10(-4) cm(-1), P(yy) = -10 x 10(-4) cm(-1), and P(zz) = 28 x 10(-4) cm(-1). DFT calculations predict a singly occupied molecular orbital (SOMO) with 27.2% Au 5d(xy) character, consistent with the upper limit derived from the uncertainties in the (197)Au hyperfine parameters. Comparison with [Au([9]aneS3)2](2+) reveals that the nuclear quadrupole parameters, P(ii) (i = x, y, z) are very sensitive to the nature of the Au(II) co-ordination sphere in these macrocyclic complexes. The observed geometries and bond lengths for the cations [Au([9]aneS2O)2](+/2+/3+) reflect the preferred stereochemistries of d(10), d(9), and d(8) metal ions, respectively, with the higher oxidation state centers being generated at higher anodic potentials compared to the related complexes [Au([9]aneS3)2](+/2+/3+).  相似文献   

11.
The pyridyl-lead complexes [Pb(m)-C5H4N](-) (m = 1-4), which are produced from the reactions between lead clusters formed by laser ablation and the pyridine molecules seeded in argon carrier gas, are studied by photoelectron (PE) spectra and density functional theory. The adiabatic electron affinity (EA) of [Pb(m)C5H4N](-) is obtained from PE spectra at photon energies of 308 and 193 nm. Theoretical calculation is carried out to elucidate their structures and bonding modes. A variety of geometries for the isomers are optimized to search for the lowest-energy geometry. By comparing the theoretical results, including the EA and simulated density of state spectra, with the experimental determination, the lowest-energy structures for each species are obtained. The following analysis of the molecular orbital composition provides the evidence that the pyridyl binds on lead clusters through the Pb-C sigma bond. Moreover, there is an apparent spin-state transition from triplet state toward singlet state for the ground-state structure of [Pb(m)C5H4N](-) with an increase of lead cluster.  相似文献   

12.
The geometries and relative stabilities of the singlet and triplet states of phenyl- (Cs), diphenyl- (C2), 1-naphthyl- (Cs), di(1-naphthyl)- (C2), and 9-anthryl-substituted (Cs) carbenes were investigated at the B3LYP/6-311+G(d,p) + ZPVE level of density functional theory. The singlet-triplet energy separations (DeltaEST), 2.7, 2.9, 3.4, 3.7, and 5.7 kcal/mol, respectively, after including an empirical correction (2.8 kcal/mol) based on the error in the computed singlet-triplet gap for methylene versus experiment, are in good agreement with available experimental values. Consistent with literature reports, triplet di(9-anthryl)carbene has a linear, D2d symmetrical, allene structure with 1.336 A C=C bond lengths and considerable biradical character. B3LYP favors such cumulene biradical structures and triplet spin states and predicts a large (>15 kcal/mol) "di(9-anthryl)carbene" singlet-triplet (biradical) energy gap. The resonance stabilization of both singlet and triplet carbenes increases modestly with the size of the arene substituent and overall, (di)arylcarbenes, both singlet and triplet, are better stabilized by bigger substituents. For example, methylene is stabilized more by a naphthyl than a phenyl group (singlets, 26.6 versus 24.4; and triplets, 20.9 versus 18.1 kcal/mol, respectively). The carbene geometries are affected by both steric effects and arene-carbene orbital interactions (sigma-p and p-pi). For instance, the central angles at the carbene are widened by a second arene group, which leads to increased s-character and shorter carbene bond lengths (i.e., C-C, C-H). In general, the aromaticity of the substituted rings in triplet carbenes is most affected by the presence of the unpaired electrons.  相似文献   

13.
The La(III), Ce(III), Pr(III), Nd(III), Sm(III), and Eu(III) complexes of the racemic heterochiral nonaaza macrocyclic amine L have been synthesized and characterized by spectroscopic methods. The X-ray crystal structures of the [PrL][Pr(NO(3))(6)].CH(3)OH and the isomorphic [NdL][Nd(NO(3))(6)].CH(3)OH complexes show that all nine nitrogen atoms of the macrocycle coordinate to the Ln(3+) ion, completing its coordination sphere. The macrocycle wraps tightly around the metal ion in double-helical fashion. The structures reveal the RRRRSS/SSSSRR configuration at the stereogenic carbon atoms of the three cyclohexane rings, confirming the heterochiral nature of the parent 3 + 3 macrocycle obtained in the condensation of racemic trans-1,2-diaminocyclohexane and 2,6-diformylpyridine. The NMR spectra of the isolated complexes indicate the presence of low C(1) symmetry [LnL](3+) complexes. The same symmetry is indicated by the X-ray crystal structures of Pr(III) and Nd(III) complexes, which show that for the RRRRSS enantiomer of the macrocycle L, the helix axis passes through the cyclohexane ring of RR chirality and the opposite pyridine ring. The NMR studies of complex formation in solution by the paramagnetic Pr(3+) and Eu(3+) ions indicate that the initially formed [LnL](3+) complexes are of C(2) symmetry. For the RRRRSS enantiomer of the macrocycle L in the C(2)-symmetric species, the helix axis passes through the cyclohexane ring of SS chirality and the opposite pyridine ring. The C(1)-symmetric and C(2)-symmetric forms of the [LnL](3+) complexes constitute a new kind of isomers and the conversion of the kinetic complexation product of C(2) symmetry into the thermodynamic product of C(1) symmetry corresponds to an unprecedented switching of the orientation of the helix axis within the macrocycle framework.  相似文献   

14.
A novel series of luminescent heterodecanuclear mixed-metal alkynyl complexes, [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(N--N)(CO)3]4](PF6)2, (N--N = tBu2bpy, Me2bpy, phen, Br2phen), have been successfully synthesized; the X-ray crystal structures of [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Me2bpy)(CO)3]4](PF6)2 and [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Br2phen)(CO)3]4](PF6)2 have also been determined.  相似文献   

15.
Two multidentate ditopic ligands L1 and L2 which contain both N-donor and crown ether units have been synthesised. The potentially octadentate ligand L1 forms a trinuclear heterometallic double helicate with Cu(I) and Zn(II) ([Zn2Cu(L1)2](5+)), whereas L2 forms a tetranuclear heterometallic double helicate with the same metal ions ([Zn2Cu2(L2)2](6+)). Both species have been characterised by (1)H NMR, ESI-MS and single crystal X-ray crystallography. Reaction of [Zn2Cu2(L2)2](6+) with Ba(2+) results in the coordination of the crown ether units giving the simple barium coordinated species [Zn2Cu2(L2)2Ba2](10+). However, reaction of [Zn2Cu(L1)2](5+) with Ba(2+) deprograms the ligand and results in the formation of a mixture of species.  相似文献   

16.
The synthesis and characterization of a new bis([9]aneN3) ligand (H2L) containing two [9]aneN3 macrocyclic moieties separated by a 2,2'-methylene-bis-cresol (cresol = 4-methyl-phenol) unit is reported. A potentiometric and (1)H NMR study in aqueous solution reveals that H2L is in a zwitterionic form, and protonation of the cresolate oxygens occurs only with the formation of the highly charged (H5L)(3+) and (H6L)(4+) species at acidic pH values. The coordination properties of H2L toward Cu(II), Zn(II), Cd(II), and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand gives both mono- and binuclear complexes in aqueous solution. At acidic pH values the ligand forms stable binuclear [M2H2L](4+) complexes, where each metal is coordinated by two amine groups of [9]aneN3 and the deprotonated oxygen of the adjacent cresol unit; the remaining amine group is protonated. Deprotonation of the [M2H2L](4+) species at alkaline pH values affords [M2L](2+) complexes, where all amine groups of the [9]aneN3 moieties are involved in metal coordination. Binding of mono-, di- and triphosphate, and adenosine triphosphate (ATP) was studied by means of potentiometric, (1)H and (31)P NMR measurements and by molecular dynamics simulations. The receptor forms stable 1:1 adducts with di-, triphosphate, and ATP, while the interaction with monophosphate is too low to be detected. In the complexes both the [9]aneN3 moieties act cooperatively in the substrate binding process. The stability of the adducts increases in the order diphosphate < triphosphate < ATP. This trend is explained in terms of increasing number of charge-charge interactions between the phosphate chains and the protonated [9]aneN3 subunits and, in the case of ATP, of stacking interactions between the adenine and cresol units.  相似文献   

17.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

18.
Z-3-Amino-2-propenenitrile, H2NCH=CHCN, a compound of astrochemical and astrobiological interest, has been studied by Stark and Fourier transform microwave spectroscopy along with eight of its isotopologues; the synthesis of five of these are reported. The spectra of the ground vibrational state and of three vibrationally excited states belonging to the two lowest normal modes were assigned for the parent species, whereas the ground states were assigned for the isotopologues. The frequency of the lowest in-plane bending fundamental vibration was determined to be 152(20) cm(-1) and the frequency of the lowest out-of-plane fundamental mode was found to be 176(20) cm(-1) by relative intensity measurements. A delicate problem is whether this compound is planar or slightly nonplanar. It was found that the rotational constants of the nine species cannot be used to conclude definitely whether the molecule is planar or not. The experimental dipole moment is mu(a) = 16.45(12), mu(b) = 2.86(6), mu(c) = 0 (assumed), and mu(tot.) = 16.70(12) x 10(-30) C m [5.01(4) D]. The quadrupole coupling constants of the two nitrogen nuclei are chi(aa) = -1.4917(21) and chi(cc) = 1.5644(24) MHz for the nitrogen atom of the cyano group and chi(aa) = 1.7262(18) and chi(cc) = -4.0591(17) MHz for the nitrogen atom of the amino group. Extensive quantum-chemical calculations have been performed, and the results obtained from these calculations have been compared with the experimental values. The equilibrium structures of vinylamine, vinyl cyanide, and Z-3-amino-2-propenenitrile have been calculated. These calculations have established that the equilibrium structure of the title compound is definitely nonplanar. However, the MP2/VQZ energy difference between the planar and nonplanar forms is small, only -423 J/mol. Z-Amino-2-propenenitrile and E-3-amino-2-propenenitrile are formed simply by mixing ammonia and cyanoacetylene at room temperature. A plausible reaction path has been modeled. G3 calculations indicate that the enthalpy (298.15 K, 1 atm) of the transition state is about 130 kJ/mol higher than the sum of the enthalpies of the reactants ammonia and cyanoacetylene. This energy difference is comparatively high, which indicates that both E- and Z-3-aminopropenenitrile are not likely to be formed in the gas phase in cold interstellar clouds via a collision between ammonia and cyanoacetylene. An alternative reaction between protonated cyanoacetylene (H-C[triple bond]C-C[triple bond]NH+) and ammonia is predicted to have a much lower activation energy than the reaction between the neutral molecules. Although protonated E- and Z-3-aminopropenenitrile in principle may be formed this way, it is more likely that a collision between NH3 and H-C[triple bond]C-C[triple bond]NH+ leads to NH4+ and H-C[triple bond]C-C[triple bond]N.  相似文献   

19.
A series of platinum(II) complexes of the type [Pt(NN)(pyB)2](NO3)2 (NN = bipy, phen; pyB = 3- or 4-pyridineboronic acid) were successfully prepared and fully characterised by 1D- and 2D-multinuclear NMR spectroscopy and ESI-MS. Using VT 1H NMR spectroscopy, rotational isomers for [Pt(NN)(3-pyB)2](NO3)2 were identified and the free energies of activation for rotation of 3-pyB about the Pt-N bond were determined to be DeltaG++310) = 69.2 +/- 0.1 kJ mol(-1) and DeltaG++(305) = 66.0 +/- 0.1 kJ mol(-1) for [Pt(bipy)(3-pyB)2](NO3)2 and [Pt(phen)(3-pyB)2](NO3)2, respectively. The 3- and 4-pyB ligands readily deboronate in boiling H2O to afford [Pt(NN)(py)2](NO3)2; the structure of [Pt(phen)(py)2](2+) (as its PF6- salt) was confirmed by X-ray crystallography. Preliminary thermal denaturation studies revealed only minimal interactions between [Pt(NN)(pyB)2](NO3)2 and calf-thymus DNA and is attributed to hydroxylation of the boronic acid groups at pH 7.4 to afford the corresponding zwitterionic boronate species. This was confirmed by means of variable pH 1H and 11B{1H} NMR spectroscopy.  相似文献   

20.
Optical power limiting and luminescence properties of two Pt(II) complexes with thiophenyl and phenyl groups in the ligands, trans-Pt(P(n-Bu)3)2(C[triple bond]C-Ar)2, where Ar = -C4H2S-C[triple bond]C-p-C6H4-n-C5H11 (1) and -p-C6H4-C[triple bond]C-C4H3S (2), have been investigated. The fluorescence lifetimes were found to be on the sub-nanosecond time scale, and the quantum yields were low, in accord with fast intersystem crossing from the excited singlet to triplet manifold. The phosphorescence lifetimes of 1 and 2 were shorter than that of a Pt(II) complex having two phenyl groups in the ligands. In order to elucidate the C-Pt bonding nature in the ground state, the 13C NMR chemical shift of the carbon directly bonded to Pt, the coupling constants 1JPtC, 2JPtC, and 1JPtP, and IR nuC[triple bond]C wavenumbers were obtained for 1, 2, and three other trans-diarylalkynyl Pt(II) complexes. X-ray diffraction data of 1 and 2 and density functional theory calculated geometries of models of 1, 2, and trans-Pt(P(n-Bu)3)2(C[triple bond]C-p-C6H4-C[triple bond]C-C6H5)2 (3) show that 1 preferably exists in a different conformation from that of 2 and 3. The variations in photophysical, NMR, and IR data can be rationalized by differences in geometry and pi-backbonding from Pt to the alkynyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号