首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usual method of studying thermal degradation mechanisms of polymers in vacuo is to use electron ionization pyrolysis mass spectrometry. This can lead to mass spectral fragmentation from the 70 eV electrons used. Low energy electrons (10–15 eV) produce a low abundance of positive ions. However, if a molecule is prone to capture a thermal energy electron, then negative ions are produced in high abundance. This report describes the negative ion pyrolysis mass spectrometry of polyethylene terephthalate and polybutylene terephthalate.  相似文献   

2.
3.
In order to investigate the effects of oxygen on the radiation-induced postpolymerization of trioxane in the solid state, a kinetic study has been made. Trioxane was purified by sublimation through Ag2O and Na-K alloy in vacuo and was irradiated and polymerized in the presence of rigorously dry oxygen. It was found that the initial rate of polymerization and the polymer yields are larger than those obtained in vacuo. By using the kinetic scheme proposed previously the results were analyzed kinetically. It was found that the influence of oxygen on the postpolymerization of trioxane is mainly attributable to the increase in the concentration of active species. The results obtained in dry air have been discussed in comparison with those in vacuo reported previously.  相似文献   

4.
The radiation-induced polymerization of tetraoxane in the solid state has been investigated in air and in vacuo. The polymerization rate was higher in air than in vacuo, whereas the molecular weight of the polymer obtained at high conversion in air was considerably lower than in vacuo. A large decrease in the molecular weight with increasing polymer yield observed in air may be explained mainly by degradation during polymerization.  相似文献   

5.
Abstract— The electron affinities and ionization potentials of amorphous sulfur, vitreous selenium and several phthalocyanines were measured by Nelson's electron beam retardation method and photoelectric emission, respectively. The electron affinities (Ac) measured were: 4.5 eV for sulfur, 3.4eV for selenium, and approximately 4.3 eV for all the phthalocyanines measured. Photoemission thresholds (Ic) were 7.0 eV for sulfur and 6.0 eV for selenium. Two photoionization thresholds (at about 5.2 and 6.1 eV) were found for both α-copper and α-metal-free phthalocyanine; the former is attributed to impurity levels, the latter to bulk states. In each case, the band gap calculated from Ic and Ac was found to be approximately equal to the optical threshold for photoconductivity.  相似文献   

6.
In this work the results of DC conductivity measurements of polycrystalline p-sexiphenyl thin films are presented. The investigations concerned the effect of temperature, film thickness and electric field on the DC conductivity mechanism. The thickness of the investigated material varied from 0.2 to 2.5 μm. The measurements were carried out for different electrode polarities of the 0 -100 V voltage and at temperatures ranging from 15 to 325 K. Thin films of p-sexiphenyl were obtained by controlled vacuum sublimation on BK-7 glass substrate with gold and aluminium electrodes. Analyzing the obtained results we conclude that injection of the charge carrier from electrodes into the investigated material proceeds by thermionic emission and field emission and it is dependent on temperature and external electric field. The charge carrier transport is controlled by localized states (traps) in the forbidden energy gap. The activation energy calculated from formula ln I = f(1/kT) varied from kT for low temperature up to 1.0 eV.  相似文献   

7.
The solid-state polymerization of 1,2,3,4-diepoxybutane appears to proceed “insource” by an ionic mechanism and has an overall activation energy of 0.4 kcal./mole with an intensity dependency of 0.99. There is a rapid increase in the rate of polymerization just prior to the melting point and a very low rate for the liquid-phase reaction. Limiting conversions of 5% polymer are observed at ?196°C. for irradiation in vacuo. No limiting conversion was observed when the monomer was polymerized in the presence of air or in vacuo at ?78°C. Under all polymerization conditions the reactions were characterized by the absence of an induction period.  相似文献   

8.
Poly(isobutylene) (PIB) chains with a radical at the chain end were graft-copolymerized on the poly(tetrafluoroethylene) (PTFE) surface in vacuo at 77 K. The PIB chains tethered on the PTFE surface in vacuo were regarded as isolated chains from neighboring tethered PIB chains. The molecular motion of the ends of the isolated PIB chains was observed by an electron spin resonance (ESR) spectrometer in the temperature range from 3 to 125 K, which was lower than Tg of PIB, 200 K,1 and two motion modes were found: One is a quantum tunneling of the methyl group located at the chain end at 3 K, and the other is an interconformation transition with freely rotating methyl group at the end at 77 K, where the transition rate was estimated to be 15 MHz at that temperature. The transition rate increased with an increase in temperature. The activation energy of the transition was estimated to be 370 J/mol. The high mobility and low activation energy was attributed to the isolation of PIB chains in vacuo. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2095–2102, 1998  相似文献   

9.
Electropolymerization of cyanogen in acetonitrile containing an electrolyte yields a poly(cyanogen). Its structure involves an open-structured dimer derived from the heterocyclic anion C7N7? mixed with a sequence of nitrile-substituted, conjugated carbon–nitrogen bonds. Although this polymer is an insulating solid, pyrolysis in vacuo to 700°C leads to highly conducting carbon–nitrogen pyropolymers via crosslinking and nitrogen elimination. The 700° pyropolymer has a carbon–nitrogen ratio of 5:1, a room temperature conductivity of 1 Ω?1 cm?1, and an activation energy for conduction of ~0.03 eV.  相似文献   

10.
The reaction products of the picolyl radicals at high temperature were characterized by mass-selective threshold photoelectron spectroscopy in the gas phase. Aminomethylpyridines were pyrolyzed to initially produce picolyl radicals (m/z=92). At higher temperatures further thermal reaction products are generated in the pyrolysis reactor. All compounds were identified by mass-selected threshold photoelectron spectroscopy and several hitherto unexplored reactive molecules were characterized. The mechanism for several dissociation pathways was outlined in computations. The spectrum of m/z=91, resulting from hydrogen loss of picolyl, shows four isomers, two ethynyl pyrroles with adiabatic ionization energies (IEad) of 7.99 eV (2-ethynyl-1H-pyrrole) and 8.12 eV (3-ethynyl-1H-pyrrole), and two cyclopentadiene carbonitriles with IE′s of 9.14 eV (cyclopenta-1,3-diene-1-carbonitrile) and 9.25 eV (cyclopenta-1,4-diene-1-carbonitrile). A second consecutive hydrogen loss forms the cyanocyclopentadienyl radical with IE′s of 9.07 eV (T0) and 9.21 eV (S1). This compound dissociates further to acetylene and the cyanopropynyl radical (IE=9.35 eV). Furthermore, the cyclopentadienyl radical, penta-1,3-diyne, cyclopentadiene and propargyl were identified in the spectra. Computations indicate that dissociation of picolyl proceeds initially via a resonance-stabilized seven-membered ring.  相似文献   

11.
Thermogravimetric analyses (TGA) of catalyst-free polydimethylsiloxanes (PDMS) have been carried out in controlled atmospheres and a kinetic analysis of the results has enabled the various decomposition processes to be separated and identified. The calculated activation energy for thermal depolymerization is 42 ± 3 kcal/mole, while thermo-oxidation has an apparent activation energy of 30 ± 2 kcal/mole. Quantitative analyses of the major degradation products and molecular weight distribution studies of the residues from degradation studies under isothermal conditions have shown that in vacuo, PDMS fractions depolymerize to cyclic dimethylsiloxanes and low molecular weight linear residues by a randomly initiated mechanism which, it is postulated, involves the formation of an intramolecular, cyclic, four-centered transition state followed by siloxane bond rearrangement. This mechanism is a basic property of linear PDMS fractions and is independent of molecular weight. Molecular weight distribution (MWD) changes observed from further isothermal investigations on hydroxy endblocked PDMS fractions, have shown the presence of a chain-lengthening process in vacuo below the depolymerization temperature. This process, with an apparent activation energy of 8.6 ± 1 kcal/mole, is attributed to the intermolecular condensation of terminal hydroxyl groups.  相似文献   

12.
Three samples of poly{2,2′-[N,N′-bis(1,4-phenylene)benzophenone-3,3′,4,4′-tetracarboxylimide-6,6′-bis(3-phenyl-quinoxaline)]} (PPIQ), were prepared, differing in molecular weights and polymer chain endings. Their thermal degradation in vacuo and in air was determined by isothermal weight loss measurements. As in the case of poly-[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxaline)] (PPQ), the temperature coefficients of thermal degradation in air were independent of molecular weight. However, in contrast, the temperature coefficients were independent of the type of polymer endgroups. It is, therefore, concluded that, contrary to amino-terminated PPQ's, polymer chain-end unzipping of PPIQ is of minor importance during thermal-oxidative degradation.  相似文献   

13.
Acetaldehyde and chloral were copolymerized using triethyl aluminum catalyst. The copolymer (ACC) obtained with equimolar monomer feed is not alternating in structure as it was once thought to be; it is comprised of two fractions differing in MW and composition. ACC has good thermal stability which is further improved by endcapping. Radiolysis in vacuo caused depolymerization with a G(M) value (number of monomers produced per 100 eV) of about 4000 to 80% completion. The G(S) value for chain scission is 1.9. These processes are effectively inhibited by benzoquinone. Oxygen markedly increases G(M) to ca. 18,000 and > 97% completion. Addition of tetrabutyl ammonium salt or tetramethyl urea has no effect on the depolymerization, whereas the addition of di-t-butyl-p-cresol causes an induction period after which normal unzipping ensues. Even UV photolysis of ACC in the presence of oxygen produces monomer with a quantum yield of 1.7, but very little photolysis occurs in the absence of oxygen. Gamma radiolysis sensitized by (C6H5)2IPF6 has G(M) value of 32,700. These results are very similar to the radiolysis and photolysis of the homopolymer of monochloroacetaldehyde and reinforce the mechanisms proposed for them. The E-beam sensitivity of ACC is about 3 × 10?6 C cm?2.  相似文献   

14.
The steady‐state and time‐resolved photoluminescence (PL), electrochemical behavior, and electroluminescence (EL) of didodecyloxy poly(p‐phenylenevinylene)‐based polymers that contained along the backbone structure 1,3,5‐triphenylbenzene (PC) or 2,4,6‐triphenylpyridine (PN) were studied. An intensive green PL broad‐band emission with maxima at 516 and 527 nm was observed from thin films of PC and PN polymers, respectively, redshifted in comparison with the PL emission spectra measured in tetrahydrofuran solutions. The PL decay dynamics revealed the existence of more than one excited species, and the decay curves were best described by three‐term exponential functions with a dominant lifetime of about 1 ns. The results of time‐resolved PL and steady‐state PL studies indicated excimer or aggregate formation. Both polymers oxidized irreversibly. A quasireversible reduction was observed in the PN polymer, whereas the PC polymer reduced irreversibly. For PC, slightly higher values of the ionization potential (EIP) and electron affinity (EA) were found (EIP = 5.52 eV, EA = 2.85 eV) than those for PN (EIP = 5.37 eV, EA = 2.77 eV). Light‐emitting devices with indium tin oxide hole‐injecting and aluminum electron‐injecting electrodes were prepared and studied. They emitted green light, and their EL spectra were similar to those of PL thin films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 524–533, 2006  相似文献   

15.
Geometries of 27 generated conformers of levoglucosan were optimized in vacuo at DFT level of theory combining several functionals with high quality basis sets. For the sake of comparison a reference molecular and crystal geometry obtained from 30 K single crystal neutron diffraction data was used. Analysis of the conformers’ geometries revealed that in all stable conformers intramolecular two-or three centre hydrogen bonds were formed. Relative energy of the conformer, which approximated the molecule in the crystal structure the most, was only ∼3 kcal/mol higher, than the energy of the most stable conformer in vacuo. The largest discrepancies between the geometries calculated in vacuo and experimental geometry concentrated in the vicinity of anomeric C1. These differences were reduced by involving O1 to intermolecular hydrogen bond using a simple model of the respective hydrogen bond in the crystal.   相似文献   

16.
High-resolution NMR spectra was obtained for linear polyethylene powder irradiated by 60Co γ-rays in vacuo or in air. For the sample irradiated in vacuo, the spectra consist of two components having different line width. The narrow component was assigned to soluble molecules and the broad one to gel. When samples are irradiated in air, their spectra show no broad component. The GPC curves obtained for the samples irradiated in air shift to high elution counts (low molecular weight) upon increase of the irradiation dose. It is concluded that oxidative degradation is the predominant reaction in the sample irradiated in air.  相似文献   

17.
The stability of poly(3‐hexylthiophene) (P3HT) helical structure has been investigated in vacuo and in amorphous polymer surrounding via molecular dynamics‐based simulations at temperatures below and above the P3HT melting point. The results show that the helical chain remains stable at room temperature both in vacuo and in amorphous surrounding, and promptly loses its structure at elevated temperatures. However, the amorphous surrounding inhibits the destruction of the helix at higher temperatures. In addition, it is shown that the electrostatic interactions do not significantly affect the stability of the helical structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2448–2456  相似文献   

18.
The isothermal degradation of poly-2,2′-(m-phenylene)-5,5′-bibenzimidazole in vacuo has been studied. Measurement of the increase in pressure with time, coupled with infrared analysis, was used to determine the distribution of the degradation products. Processes A and B with different second-order rate laws were determined to be significant in the temperature range of 550–700°C. Process A leads to the formation of equimolar quantities of hydrogen and ammonia and has an activation energy of 68 kcal/mole. Process B leads to the production of HCN, NH3, and H2 in the ratio of 1:1:2.5 and has an activation energy of 77 kcal/mole. The activation energies and the rate laws are consistent with a mechanism in which the initial degradation step is the bimolecular reaction of two aromatic rings.  相似文献   

19.
Thin films of poly(ethyl acrylate) and poly(n-butyl acrylate) were decomposed in vacuo by means of a high pressure Hg lamp, and the rate of development of volatile products was measured. The main gaseous products were CO, CO2, and the alcohol, aldehyde, alkane, and formate derived from the respective ester groups. In addition poly(ethyl acrylate) evolved acetal as well as ethyl propionate, while n-butyl valerate was evolved from poly(n-butyl acrylate) only after prolonged exposure. All products and the principal features of the decomposition are discussed.  相似文献   

20.
Radical formation during tensile deformation of highly oriented poly[p-(2-hydroxyethoxy)benzoic acid] fibers was investigated by electron spin resonance. Stretching of fibers in vacuo and in a stream of nitrogen gas at room temperature generated a large number of radicals which increased rapidly with macroscopic strain, while stretching in air generated only a small number of radicals. The radicals formed in vacuo or in nitrogen decayed rather rapidly after introduction of air. The observed spectrum was apparently a triplet with a line separation of about 7.5 gauss and a small asymmetry. The inspection of the hyperfine structure, line separation, and total width of the spectrum and the comparison between the observed and the calculated spectrum based on a model substance proved that the observed species is a phenoxy type radical generated by rupture of main chains. A small asymmetry of observed spectrum was explained by anisotropy of the g-tensor. The alkyl end-radical generated together with one of the phenoxy type could not be detected, perhaps owing to its high reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号