首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Model calculations of phase diagrams of side chain liquid crystal polymers (SCLCP) and low molecular weight liquid crystals (LMWLC) are presented. The polymer is assumed to have grafted side chain units characterized by a nematic‐isotropic transition temperature TNI 2, and the LMWLC presents also a similar transition at a temperature TNI 1 . The model calculations can accommodate for the cases where the latter two temperatures are comparable or widely different. For the sake of illustration, the case TNI 1 = 60°C and TNI 2 = 80°C is adopted here. The main point of interest here is to perform a comparative study of the equilibrium phase diagrams of SCLCP made either of linear free chains or crosslinked chains forming a single network. To our knowledge this is the first comparative study of the phase behavior of binary nematic mixtures involving linear and crosslinked polymer matrices which permits to clearly identify the effects of crosslinks present in the polymer matrix. The crosslinks attribute elasticity to the polymer constituent which induces important distortions in the phase diagram. To highlight these distortions, examples of hypothetical binary nematic mixtures are chosen involving both linear and crosslinked polymers with side chain mesogen units. The quadrupole interaction parameter between the two nematogens is related to individual parameters via a geometric average ν212 = κν11ν22 with a coupling parameter κ. Different values of this parameter are considered and the impact of coupling strength on the phase diagram is discussed for crosslinked and linear polymers.  相似文献   

2.
The calorimetric glass‐transition temperature (Tg) and transition width were measured over the full composition range for solvent–solvent mixtures of o‐terphenyl with tricresyl phosphate and with dibutyl phthalate and for polymer–solvent mixtures of polystyrene with three dialkyl phthalates. Tg shifted smoothly to higher temperatures with the addition of the component with the higher Tg for both sets of solvent–solvent mixtures. The superposition of the differential scanning calorimetry traces showed almost no composition dependence for the width of the transition region. In contrast, the composition dependence of Tg in polymer–solvent mixtures was different at high and low polymer concentrations, and two distinct Tg's were observed at intermediate compositions. These results were interpreted in terms of the local length scale and associated local composition variations affecting Tg. The possible implications of these results for the dynamics of miscible polymer blends were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1155–1163, 2004  相似文献   

3.
A study of the thermal decomposition of an acetylene–ethane-d6 mixture indicates that the rate constant for hydrogen abstraction from acetylene by methyl is more than 20 times less than for abstraction from ethane. Isotopic exchange is initiated by a rapid reaction between product D atoms and C2H2. A series of experiments involving the reactions of a D2–acetylene mixture indicated that a molecular exchange process was also occurring, and it was shown that d[C2HD]/dt = k[D2]0.7[C2H2]0.3, effective activation energy = 15.8 kcal/mol. This mechanism made an insignificant contribution to isotope exchange in C2H2–C2D6 mixtures.  相似文献   

4.
The polymerization of acrylonitrile (M) initiated by the Ce(IV)–acetophenone (AP) redox pair has been studied in acetic–sulfuric acid mixtures in a nitrogen atmosphere. The rate of polymerization is proportional to [M]3/2, [AP]1/2 and [Ce(IV)]1/2. The rate of disappearance of ceric ion,–RCe, is proportional to [AP], [M], and [Ce(IV)]. The effect of certain salts, solvent, acid and temperature on both the rates have been investigated. A suitable kinetic scheme has been proposed, and the composite rate constants kp 2(k/k/t) and k0/ki are reported.  相似文献   

5.
The rate constant of malachite green (MG+) alkaline fading was measured in water–ethanol–2‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283–303 K. It was observed that the observed reaction rate constants, kobs, were increased in the presence of different weight percentages of ethanol and 2‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by using the SESMORTAC model. In each series of experiments, the concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at the constant concentration of one alcohol and variable concentrations of the second one, with an increase in temperature, k2 values decrease according to the trend of hydroxide ion nucleophilic parameter values and k1 values increase. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 441–453, 2011  相似文献   

6.
The new compounds Pr8(C2)4Cl5 (1), Pr14(C2)7Cl9 (2), Pr22(C2)11Cl14 (3), Ce2(C2)Cl (4), La2(C2)Br (5), Ce2(C2)Br (6), Pr2(C2)Br (7), Ce18(C2)9Cl11 (8), and Ce26(C2)13Cl16 (9) were prepared by heating mixtures of LnX3, Ln and carbon or in an alternatively way LnX3, and “Ln2C3–x” in appropriate amounts for several days between 750 and 1200 °C. The crystal structures were investigated by X‐ray powder analysis (5–7) and/or single crystal diffraction (1–4, 8, 9). Pr8(C2)4Cl5 crystallizes in space group P21/c with the lattice parameters a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, β = 103.94(1) °, Pr14(C2)7Cl9 in Pc with a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, β = 104.00(3) °, Pr22(C2)11Cl14 in P21/c with a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, β = 103.92(3) °, Ce2(C2)2Cl in C2/c with a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, β = 101.37(3) °, La2(C2)2Br in C2/c with a = 15.313(5), b = 4.193(2), c = 6.842(2) Å, β = 100.53(3) °, Ce2(C2)2Br in C2/c with a = 15.120(3), b = 4.179(1), c = 6.743(2) Å, β = 101.09(3) °, Pr2(C2)2Br in C2/c with a = 15.054(5), b = 4.139(1), c = 6.713(3) Å, β = 101.08(3) °, Ce18(C2)9Cl11 in P$\bar{1}$ with a = 6.7705(14), b = 7.6573(15), c = 18.980(4) Å,α = 88.90(3) °, β = 80.32(3) °, γ = 76.09(3) °, and Ce26(C2)13Cl16 in P21/c with a = 7.6644(15), b = 54.249(11), c = 6.7956(14) Å, β = 103.98(3) ° The crystal structures are composed of Ln octahedra centered by C2 dumbbells. Such Ln6(C2)‐octahedra are condensed into chains which are joined into undulated sheets. In compounds 1–4 three and four up and down inclined ribbons alternate (4+4, 4+33+4–, 4+43+44+3), in compounds 8 and 9 four and five (4+5, 5+44+54+4), and in compounds 4–7 one, one ribbons (1+1) are present. The Ln‐(C2)‐Ln layers are separated by monolayers of X atoms.  相似文献   

7.
Four binary lanthanum stannides close to the 1:1 ratio of Sn:La were synthesized from mixtures of the elements. The structures of the compounds have been determined by means of single‐crystal X‐ray data. The low temperature (α) form of LaSn (CrB‐type, orthorhombic, space group Cmcm, a = 476.33(6), b = 1191.1(2), c = 440.89(6) pm, Z = 4, R1 = 0.0247), crystallizes with the CrB‐type. The structure exhibits planar tin zigzag chains with a Sn–Sn bond length of 299.1 pm. In contrast to the electron precise Zintl compounds of the alkaline earth elements, additional La–Sn bonding contributions become apparent from the results of band structure calculations. In the somewhat tin‐richer region, the new compound La3Sn4 (orthorhombic, space group Cmcm, a = 451.45(4), b = 1190.44(9), c = 1583.8(2) pm, Z = 4, R1 = 0.0674), crystallizing with the Er3Ge4 structure type, exhibits Sn3 segments of the zigzag chains of α‐LaSn together with a further Sn atom in a square planar Sn coordination with increased Sn–Sn bond lengths. In the Lanthanum‐richer region, La11Sn10 (tetragonal, space group I4/mmm, a = 1208.98(5), c = 1816.60(9) pm, Z = 4, R1 = 0.0325) forms the undistorted tetragonal Ho11Ge10 structure type. Its structure, which contains isolated Sn atoms, [Sn2] dumbbells and planar [Sn4] rings is related to the high temperature (β) form of LaSn. The structure of β‐LaSn (space group Cmmm, a = 1766.97(6), b = 1768.28(5), c = 1194.32(3) pm, Z = 60, R1 = 0.0453), which forms a singular structure type, can be derived from that of La11Sn10 by the removal of thin slabs. Due to the different stacking of the remaining layers, planar [Sn4] chain segments and linear [Sn–Sn–Sn] anions are formed as additional structural elements. The chemical bonding (Sn–Sn covalent bonding, Sn–La contributions) is discussed on the basis of the simple Zintl concept and the results of FP‐LAPW calculations (density of states, band structure, valence electron densities and electron localization function).  相似文献   

8.
New linear and three-arm star thermoplastic elastomers (TPEs) comprising a rubbery polysobutylene (PIB) midblock flanked by glass polystyrene (PSt) blocks have been synthesized by living carbocationic polymerization in the presence of select additives by sequential monomer addition. First, isobutylene (IB) was polymerized by bi- and trifunctional tert-ether (dicumyl- and tricumyl methoxy) initiators in conjunction with TiCl4 conintiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living, narrow molecular weight, distribution PIB (M?w/M?n = 1.1-1.2) has reached the desired molecular weight, styrene (St) together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to block PSt from the living chain ends. Uncontrolled initiation by protic impurities that produces PSt contamination is prevented by the use of DtBP. PSt-PIB-PSt blocks obtained in the absence of additives are contaminated by homopolymer and /or diblocks due to inefficient blocking and initiation by protic impurities, and exhibit poor physical properties. In contrast in the presence of the strong ED N,N-dimethylacetamide (DMA) and DtBP the blocking of St from living PIB chain occurs efficiently and block copolymers exhibiting good mechanical properties can be prepared. Virgin TPEs can be repeatedly compression molded without deterioration of physical properties. The products exhibit a low and a high temperature Tg characteristic of phase separated PIB and PSt domains. Transmission electron microscopy of linear triblocks containing ~ 34 wt % PSt also indicates microphase separation and suggests PSt rods dispersed in a PIB matrix.  相似文献   

9.
The spreading behaviour of binary and ternary equimolar mixtures of siloxane surfactants of general formula [(CH3)3SiO]2CH3Si(CH2)3 (OCH2CH2) nOCH3, n = 3–9, has been investigated. The mixtures show a pronounced temperature dependence on the initial spreading rate. Mixtures imitating the average oligoethylene glycol chain length n = 5 are the fastest spreaders at 15 °C. At 23 °C and 40 °C these mixtures spread fastest sucking n = 6 and n = 8, respectively. For a given average chain length an increasing length difference between the components of the binary mixtures reduces the initial spreading rate. Nevertheless, substantial differences between the phase transition temperature Tc from the lamellar phase (Lα) into the two‐phase state (2Φ) and the actual spreading temperature are tolerated. A clear relation between phase transition temperature Tc and initial spreading rate does not exist. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
We have synthesized novel σπ conjugated polymers with an alternating organosilanylene and π‐electron system, intending to utilize them for hole‐transporting materials of electroluminescent (EL) devices. 3,6‐Di(lithioethynyl)carbazoles were co‐polymerized with organodichlorosilanes to give the corresponding polymers with molecular weights of MW = 2000–5000. Another type of polymer with a thienylene unit was also synthesized by the nickel‐catalyzed reaction of the di‐Grignard reagent of 1,2‐bis[2‐(5‐bromothienyl)]tetraethyldisilane with 3,6‐dibromocarbazole, the molecular weight being Mn = 3100. The EL devices with a double‐layer system composed of tris(8‐quinolinolato)aluminum(III) and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers, respectively, emit green EL with a maximum intensity of the order of 103 cd m?2. Of these, the device with the thienylene–carbazole polymers exhibited the highest luminance of 1480 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

12.
Five different highly fluorescent boron‐dipyrromethene (BODIPY)‐tagged N‐heterocyclic carbene NHC–gold halide complexes were synthesized. The substitution of the halogeno ligand by 4‐substituted aryl thiolates leads to a decrease in the brightness of the complexes. This decrease depends on the electronic nature of the thiols, being most pronounced with highly electron‐rich thiols (4‐R=NMe2). The brightness of the gold thiolates also depends on the distance between the sulfur atom and the BODIPY moiety. The systematic variation of the electron density of [(NHC–bodipy)Au(SC6H4R)] (via different R groups) enables the systematic variation of the fluorescence brightness of an appended BODIPY fluorophore. Based on this and supported by DFT calculations, a photoinduced electron‐transfer quenching appears to be the dominant mechanism controlling the brightness of the appended BODIPY dye.  相似文献   

13.
The properties of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel in tetrahydrofuran/H2O mixtures were studied. Scanning electron microscopic (SEM) images demonstrate that the hydrogel changes from homogeneous to heterogeneous microstructure upon the addition of tetrahydrofuran to water. This heterogeneous PNIPAAm hydrogel in the mixture solvent exhibits a very slow response rate at temperatures above its lower critical solution temperature. The decreased response rate is attributed to the formation of special ternary complexes including the polymer and the two solvents in the tetrahydrofuran/H2O mixture. Factors controlling the thermoresponse rate are discussed further and several suggestions are provided for designing and developing fast-response PNIPAAm hydrogels in the future.  相似文献   

14.
Experimental data on gas sorption and polymer swelling in glassy polymer—gas systems at elevated pressures are presented for CO2 with polycarbonate, poly(methyl methacrylate), and polystyrene over a range of temperatures from 33 to 65°C and pressures up to 100 atm. The swelling and sorption behavior were found to depend on the occurrence of a glass transition for the polymer induced by the sorption of CO2. Two distinct types of swelling and sorption isotherms were measured. One isotherm is characterized by swelling and sorption that reach limiting values at elevated pressures. The other isotherm is characterized by swelling and sorption that continue to increase with pressure and a pressure effect on swelling that is somewhat greater than the effect of pressure on sorption. Glass transition pressures estimated from the experimental results for polystyrene with CO2 are used to obtain the relationship between CO2 solubility and the glass transition temperature for the polymer. This relationship is in very good agreement with a theoretical corresponding-states correlation for glass transition temperatures of polystyrene-liquid diluent mixtures.  相似文献   

15.
The spontaneous polymer formed from 3-hydroxyoxetane (HO), as first reported by Wojtowicz and Polak, is linear, low molecular weight, water-soluble, atactic, poly(3-hydroxyoxetane) (PHO) of high crystallinity with ? OCH2CH(OH)CH2OH end units. The highly crystalline nature of this atactic polymer may be related to the crystalline nature of atactic poly(vinyl alcohol) since PHO can be considered a copolymer of vinyl alcohol and formaldehyde. Spontaneous PHO apparently is formed in a cationic polymerization by the carboxylic acids produced by the air oxidation of HO on standing at room temperature for several months. The polymerization can be duplicated by the addition of 2% hydroxyacetic acid to HO. The rate of this unusual cationic polymerization increases greatly with acid strength, e.g., trifluoromethanesulfonic acid reacts explosively with pure HO. A mechanism is proposed for this cationic polymerization. High molecular weight, water-soluble, linear atactic, and highly crystalline PHO (mp = 155°C) was made by polymerizing the trimethylsilyl ether of HO with the i-Bu3Al–0.7 H2O cationic catalyst followed by hydrolysis. Two 1H-NMR methods for measuring the tacticity of PHO were developed based on finding two different types of methylene units at 400 MHz with the methine protons decoupled. Also, an 1H-NMR method was developed for measuring branching in HO polymers. High molecular weight, linear PHO with enhanced isotacticity (80%) has been obtained in low yield as a water-insoluble fraction with Tm = 223°C. The low molecular weight PHO prepared previously by the base-catalyzed, rearrangement polymerization of glycidol is highly branched.  相似文献   

16.
Poly[4‐amino‐2,6‐pyrimidinodithiocarbamate] was prepared from the reaction of 2‐mercapto‐4,6‐diaminopyrimidine with carbon disulfide, followed by condensation through the removal of H2S gas. Five polymer–metal complexes of manganese, ferrous, ferric, zinc and mercury were then prepared. The polymer–metal complexes are investigated by elemental analyses, ultraviolet Fourier transform infrared and magnetic susceptibility. The DC electrical conductivity variation with the temperature in the region 298–498 K of the five polymer–metal complexes was determined. Doping with 5% ZnCl2 increased the electrical conductivity of the polymer at all temperatures investigated. All the polymer–metal complexes showed an increase in conductivity with an increase in temperature, which is a typical semiconductor behavior. The proposed structure of the complexes is (MLX2·mH2O)n. All the polymer–metal complexes are thermally stable, are insoluble in common organic solvents and have high melting points. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Synthesis, Crystal Structure, and Vibrational Spectra of Compounds with the Linear Dipnictidoborate (3–) Anions [P–B–P]3–, [As–B–As]3–, and [P–B–As]3– The alkali metal boron compounds M3[BX2] with X = P, As are synthesized from the alkali metals M and the binary components MX or M4X6 and BX in sealed steel ampoules (phosphides) or niobium ampoules (arsenides) at 1000 K. The compounds are obtained as bright yellow prisms (M3[BP2]) or plates (K2Na[BP2]) and yellow‐red prismatic crystals (M3[BAs2], Cs3[BPAs]) which are very sensitive against oxidation and hydrolysis. Three different structure types are formed, namely K2Na[BP2] (C2/m (No. 12); Z = 4; a new mC24 structure type); Na3[BP2] (P21/c (No. 14); Z = 4, β‐Li3[BN2] type), M3[BX2] with M = K, Rb, Cs and X = P, As and Cs3[P–B–As] (C2/c, (No. 15); Z = 4, K3[BP2] type). The bond lengths of the linear [BX2]3– anions are hardly changed and correspond to a Pauling bond order PBO = 1.9 (d(B–P) = 176.7–177.1 pm; d(B–As) = 186.5–188.0 pm). The vibrational spectra confirm the existence of unmixed and mixed units [P–B–P]3–, [As–B–As]3– and [P–B–As]3– with D∞h and C∞v symmetry, respectively. The valence force constants f(B–X) and the corresponding Siebert bond orders, calculated from the frequencies, are discussed and compared with those of the isoelectronic anions and molecules.  相似文献   

18.
The polymerization of vinyl chloride was carried out by using a catalyst system consisting of Ti(O-n-Bu)4, AlEt3, and epichlorohydrin. The polymerization rate and the reduced viscosity of polymer were influenced by the polymerization temperature, AlEt3/Ti(O-n-Bu)4 molar ratios, and epichlorohydrin/Ti(O-n-Bu)4 molar ratios. The reduced viscosity of polymer obtained in the virtual absence of n-heptane as solvent was two to three times as high as that of polymer obtained in the presence of n-heptane. The crystallinity of poly(vinyl chloride) thus obtained was similar to that of poly(vinyl chloride) produced by a radical catalyst. It was concluded that the polymerization of vinyl chloride by the present catalyst system obeys a radical mechanism rather than a coordinated anionic mechanism.  相似文献   

19.
The free radicals in p-polyphenylene and the formation of free radicals in this polymer upon pyrolysis in vacuum have been studied by means of electron spin resonance. For an unpyrolyzed series of polymer samples, a linear relationship was observed between free radical concentration and increasing carbon content. The free radicals observed in the unpyrolyzed samples did not react with NO. When samples of polyphenylene were pyrolyzed, additional free radicals were produced which did react with NO. The growth of free radical concentration upon pyrolysis was observed to be closely related to the production of volatile products from the polymer. In the temperature range 250–600°C, HCl was the principal volatile species produced. Two mechanisms were involved in HCl production: a process with an activation energy of 7.1 kcal/mole which led to the production of stable free radicals; and a process involving 75 kcal/mole which was unconnected with the production of free radicals. From 600 to 700°C, H2 was the principal volatile degradation product. The rate at which H2 was evolved showed a second-order dependence on phenyl units bearing two or three substituents; this process had an activation energy of 79 kcal/mole. Electron spin resonance spectra indicated that this process led to the production of free radicals, and infrared spectra showed that a highly crosslinked product resulted.  相似文献   

20.
The copolymerization of butadiene and propylene was investigated. It was found that the catalyst system of TiCl4–Et3Al–COCl2 yields a random copolymer of high molecular weight with a small amount of gel polymer above room temperature. Tetrachloroethylene was a good solvent for the production of high polymer containing a high proportion of propylene units in high yield. The fractionation and the analysis of degradation experiments of copolymer indicate that the copolymer is of random distribution of propylene units in the copolymer. However, the monomer reactivity ratios, rBD = 6.36 and rPr = 0.42, suggest some degree of blocked character. The properties of the copolymer were superior to those of cis-1,4–polybutadiene, especially in resistance to thermal aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号