首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When crystals of N-vinylcarbazole are γ-irradiated at 77°K., the ESR spectrum observed before warming consists of three peaks attributed to a radical–cation with the unpaired spin associated mainly with the nitrogen atom. Above 90°K. polymerization occurs, initiated by the cation, and the spectrum changes to that of an alkyl type of radical, ?N? ?H? CH2, trapped in the polymer. Single crystals were used for a detailed analysis of the nuclear hyperfine parameters of the observed radicals.  相似文献   

2.
The present paper reports the thermoluminescence (TL) glow curve of Eu2+-activated SrAl2O4 phosphor with different UV exposure times. Evaluation of kinetic parameters was done by the peak shape method. The recorded glow curve shifts towards lower temperatures with respect to increasing UV exposure time. The peaks were found at 146.76, 141.34 and 140.37 °C, respectively, for 5, 10 and 15 min of UV exposure using the heating rate of 3°C s?1. The glow peak shows the second-order kinetics. Different kinetic parameters, i.e. trap depth, order of kinetics, activation energy, and frequency factor are also calculated. The XRD pattern of the sample is compared with reported XRD using the software match.  相似文献   

3.
In the present work alkaline iron oxide nanoparticles are synthesized by a novel solvo thermal approach and characterized exhaustively by various complementary techniques. Field emission scanning electron microscopy (FESEM) studies reveal that the size of nanoparticles is in the range of 31.5 nm to 96.9 nm. Energy-dispersive X-ray spectroscopy spectral analysis reveals the presence of oxygen, carbon, iron, and sodium. The X-ray diffraction studies confirm the formation of tetragonal NaFeO2 as the major phase along with orthorhombic NaFeO2·H2O and rhombohedral FeCO3 (siderite) as the minor phases. Fourier transform infrared spectroscopy exhibits peaks due to the stretching and bending vibrations of O-H, C=O, CH3-N, CH3, C-H, C-N, and Fe-O groups. Differential scanning calorimetry (DSC) results display an endothermic peak at 100.85°C and a very small endothermic peak at 791.56°C with 819.73 mJ and 349.28 mJ energies respectively. These DSC peaks can be correlated with thermal gravimetric analysis (TGA) peaks representing 31.04% weight loss and 7.70% weight loss respectively in the sample at around 160°C and 980°C respectively.  相似文献   

4.
Poly[3,3-bis(chloromethyl)] oxetane in vacuo, after λ-irradiation at 77°K and room temperature, showed ESR spectra consisting of a triplet (hfs of 22.0G) and a doublet (hfs of 17.8G), respectively. The triplet ESR spectrum is attributed to the -CH2-C(CH2Cl)-CH2 -O- radical and the doublet ESR spectrum is attributed to the -CH2-C(CH2Cl)2-CH-O- radical. The G values for formation of radicals are estimated to be 0.3 and 0.5 at 298 and 77°K, respectively.  相似文献   

5.
Paramagnetic species produced in polycarbonate (PC) by γ- or ultraviolet irradiation were investigated by ESR. In γ-irradiation, scissions of carbonate groups in the main chain occur. ESR spectra (g = 2.0034) composed of a sharp singlet, some broad singlets, and a small signal with hyperfine structure are obtained, and they are assigned to trapped electrons, positive radical ions, phenoxy-type free radicals, phenyl radicals, and ? O? C6H4? C(CH3)2 radicals. The G value for total yields of paramagnetic species at 77°K is 1.8. The percentage of CO and CO2, the dominant gases evolved, is 65.4 and 33.8%, respectively. In ultraviolet irradiation, energy is absorbed selectively at the surface region. The surface region becomes insoluble in methylene chloride because of crosslinking of phenyl groups. The ESR spectrum obtained at 77°K is a broad singlet and assigned to phenoxy-type free radicals, phenyl radicals, and polyenyl-type free radicals. Some differences in effects of γ- and ultraviolet irradiation of PC are discussed.  相似文献   

6.
Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. We report the latest in a series of experiments designed to validate and demonstrate this newly developed tool. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, X-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. Two main peaks were identified in the TL glow curve when irradiated with 60Co, a relatively unstable peak around 120 °C and a more stable peak around 225 °C. Signal strength of both peaks decayed with time. The minimum measurable dose using this technique is 0.15 Gy, which is roughly equivalent to a 24 h irradiation at 1 cm from a 50 ng 60Co source. As a result of fading, this dose would be detectable for approximately 1 year post-irradiation. In a more detailed analysis, the TL glow curves were separated into five peaks centered near 120, 160, 225, 300, and 340 °C. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. This suggests that mechanisms controlling radiation induced defect formation from gamma, beta, X-ray, and UV sources may be similar.  相似文献   

7.
Poly-3,3-bis(chloromethyl)oxetane (poly-BCMO) was irradiated at ?196°C with electron beams and ultraviolet light, and observed ESR spectra were compared. A three-line spectrum (coupling constant of about 21 gauss) and a two-line spectrum (coupling constant of about 18 gauss) were observed after irradiation with electron beams in vacuo. They were attributed to free radicals and respectively. On the other hand, a three-line spectrum (coupling constant of about 20 gauss) and an asymmetric singlet spectrum were observed after ultraviolet irradiation in vacuum. They were assigned to free radicals and ? CH2? O·, respectively. Mechanisms of radical formation were discussed in each case. When poly-BCMO was irradiated with electron beams at ?196°C in the presence of air, peroxy radicals were produced after subsequent treatment at ?78°C. The reaction between alkyl radicals and oxygen molecules was found to be diffusion-controlled.  相似文献   

8.
This paper reports thermoluminescence glow curves of Eu3+, Dy3+-doped Ba2MgSi2O7 phosphor for different UV exposure times. Kinetic data were evaluated by the peak-shape method. The glow curves shift toward higher intensity with increasing exposure time to UV at 365 nm. When the heating rate was 5 °C s?1, peaks were observed at 101.76, 109.69, 102.67, and 104.05 °C, respectively, after UV exposure for 5, 10, 15, and 20 min. The glow peaks are indicative of second-order kinetics. Different kinetic data, i.e. trap depth, order of kinetics, activation energy, and frequency factor were also calculated. To evaluate the persistence characteristics of the luminescence of the phosphor, the lifetime of the charge in the trap was calculated; it was 348, 660, 368, and 428 s for UV exposure of 5, 10, 15, and 20 min, which indicates the luminescence of the phosphor is persistent.  相似文献   

9.
Thermoluminescence of poly(methyl methacrylate) (PMMA) irradiated with x rays, has been studied in the temperature range 100 to 460°K. Two glow peaks with maxima at 136 and 368°K have been observed. These are analyzed by three methods and the results are compared. Both curves obey second order kinetics and correspond to activation energies of 0.17 and 0.88 eV, respectively. It is possible to identify the centers responsible for the two peaks by correlation with electron spin resonance and optical data obtained for the same samples irradiated under the same conditions. Spectral studies of the emission show that the low temperature peak has its maximum at 365 nm while the high temperature peak has its maximum at 480 nm.  相似文献   

10.
Analysis of ESR spectra of mechanoradicals from poly(methyl methacrylate) reveals that after mechanical degradation in vacuo at 77°K, the sample contains two types of primary radicals? CH2? C(CH3)(COOCH3) (I) and CH2? C(CH3)(COOCH3)? CH2 (II) produced by the breaking of the polymer chain, and secondary radicals ? CH2? C(CH3)(COOCH3)? CH? C(CH3)? (COOCH3)? CH2? (III). With increasing temperature, radical I remains stable while II reacts with methylene hydrogen of the polymer chain giving rise to the secondary radical III, which decays and finally disappears as the temperature rises. After admission of oxygen at 113°K, the polymer radicals react with oxygen with formation of polymer peroxy radicals ROO. and diamagnetic dimers. With increasing temperature the latter dissociate again to the original polymer peroxy radicals which gradually decay, if the temperature is increased further. The present results are compared with earlier ones obtained on poly(ethylene glycol methacrylate) (PGMA).  相似文献   

11.
The behaviors of free radicals produced in polyethylene irradiated with ultraviolet light and electron beams were compared in connection with primary processes of radical formation and trapping regions of free radicals. In the case of irradiation with ultraviolet light, an ESR spectrum observed at ?196°C immediately after irradiation is an eight-line spectrum due to alkyl radicals of the type ? CH2? ?H? CH3, while in the case of ionizing radiation, a six-line spectrum due to ? CH2? ?H? CH2? was observed. The former radicals are produced by the Norrish type I reaction of the carbonyl groups contained in the polymer, followed by radical rearrangement; and the latter are formed by dissociation of hydrogen atom from the excited state of the polymer or ion-molecular reactions. From the sensitivity to oxygen molecules, it was deduced that free radicals are trapped in amorphous regions after ultraviolet irradiation, but mainly in crystalline regions after irradiation with electron beams. Saturation studies of ESR spectra seem to support this conclusion.  相似文献   

12.
Electron spin resonance (ESR) spectra were observed at ?160°C and at room temperature for γ-irradiated poly-α-methylstyrene. The spectrum observed at room temperature has been attributed to the radical species while that at ?160°C results from the same radical and superposition of the spectrum due to the radical ?H2-C(CH3)(C6H5)-. The radicals which are stable at room temperature could be used to graft vinyl acetate.  相似文献   

13.
The BEBO method was used to calculate the kinetic isotope effect for formyl-hydrogen abstraction from acetaldehyde by methyl radicals. The calculated isotope effect and experimental ratios of the rate constants obtained at 785°K for the reactions of CH3 with CH3CHO and CH3CDO, together with the theoretical temperature dependence of the specific rates (as formulated by the BEBO theory), were used to obtain rate constants for the steps CH3 + CH3CHO → CH4 + CH3CO (2a), CH3 + CH3CHO → CH4 + CH2CHO (2b), and CH3 + CH3CDO → CH3D + CH3CO (1a) between 298 and 1224°K. It was shown that the curvature apparent in the Arrhenius plot of the rate coefficient k2 reported for the reaction of methyl radicals with acetaldehyde in the temperature range of 298–1224°K is caused both by the simultaneous contribution of steps (2a) and (2b) to methane formation, and by the curvature in the Arrhenius plots of the two elementary rate constants themselves. The predicted curve agrees well with the experimental data, especially if the tunneling correction is applied.  相似文献   

14.
Studies of the unimolecular decomposition of 4-methylpent-2-yne (M2P) and 4,4-dimethylpent-2-yne (DM2P) have been carried out over the temperature range of 903–1246 K using the technique of very-low pressure pyrolysis (VLPP). The primary reaction for both compounds is fission of the C? C bond adjacent to the acetylenic group producing the resonance-stabilized methyl-substituted propargyl radicals, CH3C??H(CH3) from M2P and CH3C?C?(CH3)2 from DM2P. RRKM calculations were performed in conjunction with both vibrational and hindered rotational models for the transition state. Employing the usual assumption of unit efficiency for gas-wall collisions, the results show that only the rotational model with a temperature-dependent hindrance parameter gives a proper fit to the VLPP data over the entire experimental temperature range. The high-pressure Arrhenius parameters at 1100 K are given by the rate expressions log k2 (sec?1) = (16.2 ± 0.3) ? (74.4 ± 1.5)/θ for M2P and log k3 (sec?1) = (16.4 ± 0.3) ? (71.4 ± 1.5)/θ for DM2P where θ = 2.303RT kcal/mol. The A factors were assigned from the results of recent shock-tube studies of related alkynes. Inclusion of a decrease in gas-wall collision efficiency with temperature would lower both activation energies by ~1 kcal/mol. The critical energies together with the assumption of zero activation energy for recombination of the product radicals at 0 K lead to DH0[CH3CCCH(CH3)? CH3] = 76.7 ± 1.5, ΔHf0[CH3CCCH(CH3)] = 65.2 ± 2.3, DH0[CH3CCCH(CH3)? H] = 87.3 ± 2.7, DH0[CH3CCC(CH3)2? CH3] = 72.5 ± 1.5, ΔH[CH3CC?(CH3)2] = 53.0 ± 2.3, and DH0[CH3CCC(CH3)2? H] = 82.3 ± 2.7, where all quantities are in kcal/mol at 300 K. The resonance stabilization energies of the 1,3-dimethylpropargyl and 1,1,3-trimethylpropargyl radicals are 7.7 ± 2.9 and 9.7 ± 2.9 kcal/mol at 300 K. Comparison with results obtained previously for other propargylic radicals indicates that methyl substituents on both the radical center and the terminal carbon atom have little effect on the propargyl resonance energy.  相似文献   

15.
The reactions of 3‐butenyl (?CH2CH2CH?CH2) radicals—unimolecular decomposition, isomerization, as well as reaction with O2—and the subsequent unimolecular rearrangement reactions of the 3‐butenylperoxy radicals have been investigated and are compared to the analogous reactions of butyl (?CH2CH2CH2CH3) and butylperoxy radicals using transition‐state theory based on the quantum chemical calculations at the CBS‐QB3 level. For alkyl‐analogue processes, the reactions of 3‐butenyl and 3‐butenylperoxy radicals can be well characterized by the decreased and increased bond dissociation energies at the allylic and vinylic sites, respectively. The intramolecular addition reactions of the radical center atoms to the double bonds were found to be important non‐alkyl‐analogue reactions of 3‐butenyl and 3‐butenylperoxy radicals. As a consequence, the thermal decomposition of 3‐butenyl radicals was found to be slower than that of butyl radicals by one order of magnitude at temperature near 1000 K. Intramolecular addition reactions are suggested to be the predominant unimolecular rearrangement processes of 3‐butenylperoxy radicals over the entire temperature range investigated (500–1200 K). The intramolecular addition reactions of the alkenyl peroxy radicals, which have not been included in combustion kinetic models, and their implications for the autoignition of alkenes are discussed. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 273–288, 2010  相似文献   

16.
The intrinsic characteristics of radical pairs produced in squalane and in cetane receiving high gamma-dose are extensively studied with the EPR technique at temperatures from 77°K up to 150°K. The spectra of the paired radicals occur at g=4 with a very low transition probability in contrast to that of isolated radicals which appear at g=2 A well-resolved hyperfine spectrum corresponding to the species (CH3CH2.CH2CH3) is observed in cetane. The isothermal decay rates of radical pairs in cetane below 100°K are significantly slow; however, the decay kinetics at 150°K is first order with rate constant=1.86 min?1. A relatively slower decay rate is obtained for isolated radicals suggesting that the decay mechanism of paired radicals is through geminate recombination. The relative inter-radical distance in radical pairs is known from a decay curve as a function of temperature. The yields of radical pairs are low in both matrices, only few percents of those of isolated radicals. The formation mechanisms of paired radicals with direct radiolytic bond scission process are discussed in connection with the experimental observations.  相似文献   

17.
Ce3+-doped NaLi2PO4 orthophosphate (with different impurity concentrations, i.e., 0.01–0.3 mol%) was prepared by a solid state reaction method. Formation of the material was confirmed using powder X-ray diffraction analysis. TL intensity was found to be the highest for the material having impurity concentration 0.2 mol% after annealing it at around 600 K for 1 h and subsequently quenching to room temperature. A typical glow curve consists of three peaks at around 454, 493 and 570 K (dosimetry peak). Good sensitivity (~8 times more than that of TLD-100), low fading (~15 % in 2 months), low-Z material (Z eff ≈ 10.8), very wide dose response (i.e., 0.1 Gy–1.0 kGy of γ rays) make the material a ‘good’ thermoluminescent dosimeter (TLD) phosphor suitable for personnel, medical and environmental dosimetry of high-energy radiation using TL. It could also be used during cancer therapy and sterilization of food where high doses are needed to be monitored.  相似文献   

18.
In this paper, we report on the TL glow curves and kinetic parameters, activation energy, order of kinetics, and the frequency factor of copper-doped zinc sulfide nanophosphor under UV irradiations. The sample was prepared by the chemical precipitation method; thereafter, the TL glow curves were recorded for different doses of UV exposure at a heating rate of 10 °C/s. The synthesized nanophosphor exhibited TL glow peaks at 241, 255, and 281 °C for the heating rate 10 °C/s at different doses of 5, 10, and 15 min of UV exposure. The kinetic parameters activation energy E, the order of kinetics b, and the frequency factor S of synthesized nanophosphor of ZnS:Cu have been calculated by using a peak shape method while the trap depth was determined using different formulae. The sample was characterized by XRD (X-ray diffraction) and SEM (scanning electron microscope).  相似文献   

19.
Gd2O3 phosphor was synthesized by combustion synthesis using gadolinium nitrate hexahydrate as precursor and urea as fuel. Structural and surface morphology were studied by X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Chemical composition analysis of the phosphor was performed by Fourier-transform infrared spectroscopy, and tts optical properties were characterized by use of photoluminescence (PL) and thermoluminescence (TL) techniques. In PL spectra, feeble emission at 490 nm (blue) and intense emission at approximately 545 nm (green) are observed after excitation at 300 nm. TL measurement was performed on the Gd2O3 phosphor by irradiating it with γ-rays (1 kGy). A well resolved glow peak at 226.4 °C was observed. Kinetic data were estimated from the TL glow curve by use of Chen’s peak-shape method; the results are discussed in detail. The average particle size of the Gd2O3 phosphor was 41 nm; a monoclinic phase was formed at a firing temperature of 500 °C. This was in agreement with SEM and TEM results.  相似文献   

20.
《Chemical physics letters》1987,134(2):156-160
The low-pressure gas-phase thermolysis of several dialkyl peroxides has been investigated in the 250–350°C range. The free radicals were trapped at 77 K and identified by ESR. No primary alkoxyl radicals have been detected. There is evidence for the decomposition of methoxyl and ethoxyl radicals with formation of H and CH3 radicals, respectively, which readily combine with traces of O2 to yield HO2 and CH3O2. For higher homologues only RCH2O2 radicals have been detected and identified from the hyperfine structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号