首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the Cu2+-sorbitol complex [Cu2+-Sorb] structure in crystalline state has been determined by X rays, it is not known in solution, where most studies of this complex are performed. Therefore, the goal of this work was to obtain information about the structure of this complex in aqueous solution using nuclear magnetic resonance and electron paramagnetic resonance spectroscopies. The magnetic resonance results indicate that the complex is formed at approximately pH 12. In this pH the sorbitol 1H relaxation times were so short (broad line) that was not possible to use standard nuclear magnetic resonance parameters (nuclear Overhauser effect and spin–spin coupling constants values) to solve the three-dimensional structure. However, valuable structural information about the complex in solution was obtained. The relaxation results indicate that the Cu2+ ions are buried in the structure and not accessible to solvent; the 1H and 13C spectra shows strong paramagnetic shift effect indicating short distance between these nuclei and Cu2+ in the structure. No electron paramagnetic resonance signal was observed in pH 12 indicating strong Cu2+- Cu2+ dipolar interaction, compatible to Cu2+-Cu2+ distances measured in crystal, from 1.148 to 1.393 Angstroms. The complex self-diffusion coefficient (D) of 1.58 × 10−10 m2/s value, determined by Diffusion-Ordered Spectroscopy, is compatible to a molecular weight of 3–6 KDa. Therefore, these results corroborate that the [Cu2+-Sorb] complex is assembled in solution, at pH 12, with several structural parameters compatible to the toroidal hexadecacuprate supramolecular structure determined in solid state.  相似文献   

2.
Using high-field 1H and 27Al NMR spectroscopy with increased sensitivity data can be obtained at concentrations as low as 1·10-3 mol/dm3.  相似文献   

3.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   

4.
The CO-resonances of glutathion were unambiguously assigned by means of heteronuclear 2D-1H-13C-shift correlation.For part VI see Ref.9.  相似文献   

5.
The even-parity autoionizing resonance series 5p5np'[3/2]1, [1/2]1, and 5p5nf'[5/2]3 of xenon have been investigated, excited from the two metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in the photon energy range of 28000-42000 cm-1 with experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p5np' autoionizing resonances is discussed.  相似文献   

6.
In order to study the atomic jump motions in the high-temperature solid phase of LiBH4, we have measured the 1H and 11B nuclear magnetic resonance (NMR) spectra and the 1H, 7Li and 11B spin–lattice relaxation rates in this compound over the resonance frequency range of 14–34.4 MHz. In the temperature range 384–500 K, all the spin–lattice relaxation data are satisfactorily described in terms of a thermally activated jump motion of Li ions with the pre-exponential factor τ0=1.1×10−15 s and the activation energy Ea=0.56 eV. The observed frequency dependences of the spin–lattice relaxation rates in this temperature range exclude a presence of any distributions of the Li jump rate or any other jump processes on the frequency scale of 107–1010 s−1. The strong narrowing of the 1H and 11B NMR lines above 440 K is consistent with the onset of diffusive motion of the BH4 tetrahedra.  相似文献   

7.
The doubly excited 1Se, 1Po, and 1De resonance states of helium atom with screened Coulomb potentials are investigated. The complex scaling method with configuration interaction type basis functions are employed to extract the resonances associated with the He+(N = 2, 3, and 4) thresholds. 18 resonances (six below each of the He+ threshold) for each angular‐momentum state are calculated. The results lying below the He+(N = 2) threshold are in good agreement with previous calculations by the stabilization method with correlated basis wave functions. The 1Po and 1De resonance states lying below the He+(N = 3 and 4) thresholds in the screening environment are reported for the first time. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The SO2- radical can be formed on the surface of TiO2 by heating the sample in ,the presence of SO2 at 573 K and quenching at 77 K or by UV irradiation of TiO2 at 77 K in the presence of SO2.  相似文献   

9.
Chemical shifts of 1H and 13C NMR of series of methylimidazolium salts (MIM+, X=Br, BF4 and PF6) function on the length of alkyl groups on the ring, type of solvents and the concentration. The bromides series demonstrate more chemical shift variation on H2 upon the change of solvents and concentration. Unexpected H-D exchange reactions were also observed in the MIM+Br by using CD3OD and D2O. The exchange rates strongly depend on the length of the alkyl group, which could cause more steric factor to reduce the interaction between deuterium atom from solvent and C2 of the ring.  相似文献   

10.
A possibility of photochemical reduction of Re(VII) to Re(VI) in mixture of concentrated sulfuric and hydrochloric acids has been demonstrated. The reaction mechanisms of Re(VII) photoreduction and ReVIOCl5 complex decay have been considered from view point of acids and water content. The optimal conditions of ReVIOCl5 stability have been found.Spectrophotometric and ESR methods of rhenium determination based on photochemical production of ReVIOCl5 complex with the detection limit of 1g/ml have been proposed. Rhenium concentration in industrial sulfuric acid has been determined.  相似文献   

11.
An efficient synthesis of vinyl-[1-13C]pyruvate has been reported, from which 13C hyperpolarized (HP) ethyl-[1-13C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13C and 1H hyperpolarizations of ethyl-[1-13C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.  相似文献   

12.
Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR‐spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear 1H,13C and 1H,13C,31P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Fluorinated graphites (CF0.47) were obtained by reaction at room temperature of fluorine gas with graphite in the presence of boron trifluoride and hydrogen fluoride as catalysts. Their thermal treatments under fluorine at temperatures up to 600 °C lead to a progressive increase of the fluorine level resulting in an highly fluorinated graphite (CF1.02). Whatever the fluorination level, a stage one fluorine-graphite intercalation compound is obtained. The sp2 carbon hybridization is maintained for treatment temperature below 300 °C and two types of structure coexist for TT in the range 350-550 °C. Finally, above 550 °C, carbon hybridization is sp3.The resulting materials were studied by 11B, 1H, and 19F NMR and EPR at different experimental temperatures giving informations about the intercalated fluoride species, the temperature of their removal from the host fluorocarbon matrix, as well as their mobility.  相似文献   

14.
Electron spin resonance spectra of Gd3+ in diluted solid solutions of Gd2O3 in CeO2 have been studied at room temperature for Gd concentrations between 0.01 and 1.00 mol%. While in the case of Mn2+:CeO2 samples, both the linewidth and the line intensity go through a maximum between 0.2 and 0.4% Mn and then start to decrease, in the case of Gd3+:CeO2 samples the linewidth and the line intensity increase monotonically with the dopant concentration. This as taken as evidence that in Gd2O3-CeO2 diluted solid solutions there are no clustering effects similar to the ones observed in Mn:CeO2 solid solutions. It is not clear why clustering effects are present in Mn:CeO2 solid solutions and not in Gd:CeO2 solid solutions; however, it seems reasonable to assume that this is due to the fact that the ionic radius of Mn2+ (81 pm) is about 25% smaller that that of Gd3+ (107.8 pm). In any case, the fact that Gd:CeO2 solid solutions do not exhibit clustering effects means that ESR linewidth data can be used to estimate the concentration of Gd in CeO2 samples, as it is possible to do in several solid solutions of paramagnetic ions in ceramic materials. The results also suggest that the range of the exchange interaction between Gd3+ ions in CeO2 is about 0.89 nm.  相似文献   

15.
Lipopolysaccharide (LPS) is a major component of the outer membrane of all gram-negative bacteria. It interacts with some biomolecules and triggers a toxic reaction. In this paper, we studied the interaction between LPS from Salmonella Minnesota and some biomolecules using a surface plasmon resonance (SPR) biosensor. Biomolecules were immobilized on a CM5 sensor chip using the amino coupling method and LPS was injected over the immobilized surfaces. The affinity constant KA of LPS with serum albumin, hemoglobin, chitosan and lysozyme was 2.36 × 107, 2.03 × 108, 7.58 × 106, 2.82 × 104 L·mol−1, respectively. However, LPS could not interact with ferritin. __________ Translated from Chinese Journal of Analytical Chemistry, 2007, 35(5): 677–680 [译自: 分析化学]  相似文献   

16.
The diagonal 2ph-TDA and quasiparticle decouplings of the dilated electron propagator (based on an underlying bi-variational SCF) are utilized to calculate energy and width of the Be+(1s −1)2S Auger resonance for the first time. Comparison with experimental and other theoretical results reveals that the renormalized infinite order diagonal 2ph-TDA decoupling seems to offer a less balanced approach to the treatment of resonances than the second-order decoupling. The diagonal quasiparticle approximation to the self energy is seen to offer an effective and economic alternative to the non-diagonal propagator calculations.  相似文献   

17.
Single-zeta and π-electron double-zeta basis sets are used to examine some theories of the origin of the stability of the D2h isomer of O4, using ab initio valence-bond procedures. With these basis sets, resonance between covalent-type (i.e., O2 ·· O2) valence-bond structures does not lead to a stabilization of the dimer relative to the separated monomers. When basis sets of the same size are used to construct wave functions for covalent and ionic structures, covalent-ionic resonance (i.e., O2 ·· O2 ↔ O2+ ·· O2 ↔ O2 ·· O2+) is also unable to stabilize the dimer. Without consideration of the basis-set superposition error, stability is obtained when the size of the AO basis is increased for the dimer relative to the monomer, either via the basis for the ionic structures or by the inclusion of midbond functions. Brief consideration is given to an increased-valence structure for the dimer. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 547–555, 1997  相似文献   

18.
Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 °C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field 19F, 19F MAS and 13C MAS with 19F to 13C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 °C. It is shown that covalency increases with temperature.  相似文献   

19.
Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca2+ levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca2+ in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca2+‐sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca2+ in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd3+‐DO3A (DO3A=1,4,7‐tris(carboxymethyl)‐1,4,7,10‐tetraazacyclododecane) coupled to a Ca2+ chelator o‐amino phenol‐N,N,O‐triacetate (APTRA). The agents are designed to sense Ca2+ present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2–0.8 mM . The determined dissociation constant of the CAs to Ca2+ falls in the range required to sense and report changes in extracellular Ca2+ levels followed by an increase in neural activity. In buffer, with the addition of Ca2+ the increase in relaxivity ranged from 100–157 %, the highest ever known for any T1‐based Ca2+‐sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb3+ analogues, nuclear magnetic relaxation dispersion (NMRD), and 17O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca2+ addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.  相似文献   

20.
We present two novel octadentate cyclen-based ligands bearing one (L1) or two (L2) phenylacetamide pendants with two CF3 groups either at positions 3 and 5 (L1) or 4 (L2). The corresponding Gd3+ complexes possess one coordinated water molecule, as confirmed by luminescence lifetime measurements on the EuIII and TbIII analogues. A detailed 1H and 17O relaxometric characterization has revealed the parameters that govern the relaxivities of these complexes. The water-exchange rate of the mono-amide derivative GdL1 (kex298=1.52×106 s−1) is faster than that determined for the bis-amide complex GdL2 (kex298=0.73×106 s−1). 1H and 19F NMR studies have indicated that the complexes are present in solution almost exclusively as the square-antiprismatic (SAP) isomers. 19F NMR relaxation studies indicated Gd ⋅⋅⋅ F distances of 7.4±0.1 and 9.1±0.1 Å for GdL1 and GdL2, respectively. Phantom MRI studies revealed the favorable properties of GdL2 as a dual 1H/19F magnetic resonance imaging (MRI) probe, whereas the shorter Gd ⋅⋅⋅ F distance of GdL1 reduces the signal-to-noise ratio due to the very short transverse relaxation time of the 19F NMR signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号