首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.  相似文献   

2.
This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the G6del universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a set of appropriate matrices γμ for the general covariant Dirac equation plays an important role in the semi-classical tunneling method. By constructing two sets of γμ matrices, we have successfully derived the tunneling probability and Hawking temperature of the black holes.  相似文献   

3.
The entanglement entropy of an acoustic black hole in a Bose-Einstein condensates (BEC) is derived, which is associated with the phonons generated via the Hawking mechanism in a sonic hole. Considering the dispersion relation of a BEC, we recalculate the entanglement entropy of the acoustic black hole by means of statistical method in two limits. We find that the entropy is still proportional to the area of event horizon, but with a coefficient dependent on the infrared cutoff.  相似文献   

4.
YE Chi-Zhou 《理论物理通讯》2008,50(12):1336-1340
From the perturbation around the background spacetimes in the Gauss Bonnet gravity, we find the physical evidence that Ricci fiat AdS black holes and AdS solitons are different physical configurations and stay in different phases, this serves as a strong support to the previous mathematical and thermodynamieal arguments.  相似文献   

5.
This paper presents a novel high-voltage lateral double diffused metal-oxide semiconductor (LDMOS) with self- adaptive interface charge (SAC) layer and its physical model of the vertical interface electric field. The SAC can be self-adaptive to collect high concentration dynamic inversion holes, which effectively enhance the electric field of dielectric buried layer (EI) and increase breakdown voltage (BV). The BV and EI of SAC LDMOS increase to 612 V and 600 V/tim from 204 V and 90.7 V/ttm of the conventional silicon-on-insulator, respectively. Moreover, enhancement factors of r/which present the enhanced ability of interface charge on EI are defined and analysed.  相似文献   

6.
We study the property of matter in equilibrium with a static, spherically symmetric black hole in D- dimensional spacetime. It requires that this kind of matter has an equation of state ω≡pr/ρ = -n/(n + 2k), k, n ∈ N (where n 〉 1 corresponds to a mixture of vacuum matter and "hair" matter), which seems to be independent of D. However, when we associate this result with specific models, we find that these hairy black holes can live only in some special dimensional spacetime: (i) D = 2 + 2k/n while the black hole is surrounded by cosmic strings, which requires D is even or D ∈ N, depending on the value of n, this is consistent with some important results in superstring theory, it might reveal the relation between cosmic string and superstring in another aspect; (ii) the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D = 4 is special. We also present some examples of such hairy black holes in higher dimensions, including a toy model with negative energy density.  相似文献   

7.
We address the question how string compactifications with D‐branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza‐Klein particles, both longitudinal and transversal to the D‐branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species‐counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi‐classical black holes of sub‐stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/gs2, which suggests the interpretation of the well‐known relation between the Planck and string scales as the saturation of the black hole bound on the species number. In addition, we also discuss some other issues in D‐brane compactifications with a low string scale of order TeV, such as the masses of light moduli fields.  相似文献   

8.
The discovery of a large number of supermassive black holes (SMBH) at redshifts , when the Universe was only 900 million years old, raises the question of how such massive compact objects could form in a cosmologically short time interval. Each of the standard scenarios proposed, involving rapid accretion of seed black holes or black hole mergers, faces severe theoretical difficulties in explaining the short‐time formation of supermassive objects. In this work we propose an alternative scenario for the formation of SMBH in the early Universe, in which energy transfer from superconducting cosmic strings piercing small seed black holes is the main physical process leading to rapid mass increase. As a toy model, the accretion rate of a seed black hole pierced by two antipodal strings carrying constant current is considered. Using an effective action approach, which phenomenologically incorporates a large class of superconducting string models, we estimate the minimum current required to form SMBH with masses of order by . This corresponds to the mass of the central black hole powering the quasar ULAS J112001.48+064124.3 and is taken as a test case scenario for early‐epoch SMBH formation. For GUT scale strings, the required fractional increase in the string energy density, due to the presence of the current, is of order 10−7, so that their existence remains consistent with current observational bounds on the string tension. In addition, we consider an “exotic” scenario, in which an SMBH is generated when a small seed black hole is pierced by a higher‐dimensional string, predicted by string theory. We find that both topological defect strings and fundamental strings are able to carry currents large enough to generate early‐epoch SMBH via our proposed mechanism.  相似文献   

9.
Stationary spacetimes containing a black hole have several properties akin to those of atoms. For instance, such spacetimes have only three classical degrees of freedom, or observables, which may be taken to be the mass, the angular momentum, and the electric charge of the hole. There are several arguments supporting a proposal originally made by Bekenstein that quantization of these classical degrees of freedom gives an equal spacing for the horizon area spectrum of black holes. We review some of these arguments and introduce a specific Hamiltonian quantum theory of black holes. Our Hamiltonian quantum theory gives, among other things, a discrete spectrum for the classical observables, and it produces an area spectrum which is closely related to Bekenstein's proposal. We also present a foamlike model of horizons of spacetime. In our model spacetime horizon consists of microscopic Schwarzschild black holes. Applying our Hamiltonian approach to this model we find that the entropy of any horizon is one quarter of its area.  相似文献   

10.
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.  相似文献   

11.
In this overview of selected aspects of the black hole attractor mechanism, after introducing the necessary foundations, we examine the relationship between two ways to describe the attractor phenomenon in four‐dimensional N = 2 supergravity: the entropy function and the black hole potential. We also exemplify their practical application to finding solutions to the attractor equations for a conifold prepotential. Next we describe an extension of the original definition of the entropy function to a class of rotating black holes in five‐dimensional N = 2 supergravity based on cubic polynomials, exploiting a connection between four‐ and five‐dimensional black holes. This link allows further the derivation of five‐dimensional first‐order differential flow equations governing the profile of the fields from infinity to the event horizon and construction of non‐supersymmetric interpolating solutions in four dimensions by dimensional reduction. Finally, since four‐dimensional extremal black holes in N = 2 supergravity can be viewed as certain two‐dimensional string compactifications with fluxes, we discuss implications of the conifold example in the context of the entropic principle, which postulates as a probability measure on the space of these string compactifications the exponentiated entropy of the corresponding black holes.  相似文献   

12.
Super-entropic black holes possess finite-area but noncompact event horizons and violate the reverse isoperimetric inequality. It has been conjectured that such black holes always have negative specific heat at constant volume \begin{document}$ C_{V} $\end{document} or negative specific heat at constant pressure \begin{document}$ C_{P} $\end{document} whenever \begin{document}$ C_{V}>0 $\end{document}, making them unstable in extended thermodynamics. In this paper, we describe a test of this instability conjecture with a family of nonlinear electrodynamic black holes, namely 3D Einstein-Born-Infeld (EBI) AdS black holes. Our results show that when nonlinear electrodynamics effects are weak, the instability conjecture is valid. However, the conjecture can be violated in some parameter region when nonlinear electrodynamics effects are strong enough. This observation thus provides a counter example to the instability conjecture, which suggests that super-entropic black holes may be thermodynamically stable.  相似文献   

13.
We present and contrast two distinct ways of including extremal black holes in a Lorentzian Hamiltonian quantization of spherically symmetric Einstein-Maxwell theory. First, we formulate the classical Hamiltonian dynamics with boundary conditions appropriate for extremal black holes only. The Hamiltonian contains no surface term at the internal infinity, for reasons related to the vanishing of the extremal hole surface gravity, and quantization yields a vanishing black hole entropy. Second, we give a Hamiltonian quantization that incorporates extremal black holes as a limiting case of nonextremal ones, and examine the classical limit in terms of wave packets. The spreading of the packets, even the ones centered about extremal black holes, is consistent with continuity of the entropy in the extremal limit, and thus with the Bekenstein-Hawking entropy even for the extremal holes. The discussion takes place throughout within Lorentz-signature spacetimes.  相似文献   

14.
On the premise of the importance of energy conditions for regular black holes, we propose a method to remedy those models that break the dominant energy condition, e.g., the Bardeen and Hayward black holes. We modify the metrics but ensure their regularity at the same time, so that the weak, null, and dominant energy conditions are satisfied, with the exception of the strong energy condition. Likewise, we prove a no-go theorem for conformally related regular black holes, which states that the four energy conditions can never be met in this class of black holes. In order to seek evidences for distinguishing regular black holes from singular black holes, we resort to analogue gravity and regard it as a tool to mimic realistic regular black holes in a fluid. The equations of state for the fluid are solved via an asymptotic analysis associated with a numerical method, which provides a modus operandi for experimental observations, in particular, the conditions under which one can simulate realistic regular black holes in the fluid.  相似文献   

15.
The first direct gravitational‐wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general‐relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately , still orbited each other as close as ∼350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.  相似文献   

16.
Primordial black hole formation by cosmic string collapses is reconsidered in the case where the winding number of the string is larger than unity. The line energy density of a multiple winding string becomes greater than that of a single winding string so that the probability of black hole formation by string collapse during loop oscillation would be strongly enhanced. Moreover, this probability could be affected by changes in gravity theory due to large extra dimensions based on the brane universe model. In addition, a wider class of strings which are stable compared to conventional cosmic strings can contribute to such a scenario. Although the production of the multiple winding defect is suppressed and its number density should be small, the enhancement of black hole formation by the increased energy density may provide a large number of evaporating black holes in the present universe which gives more stringent constraints on the string model compared to the ordinary string scenario.  相似文献   

17.
Motivated by the parallelism existing between the puzzles of classical physics at the beginning of the XXth century and the current paradoxes in the search of a quantum theory of gravity, we give, in analogy with Planck's black body radiation problem, a solution for the exact Hawking flux of evaporating Reissner-Nordström black holes. Our results show that when back-reaction effects are fully taken into account the standard picture of black hole evaporation is significantly altered, thus implying a possible resolution of the information loss problem.  相似文献   

18.
The study of gravitating dyons and dyonic black holes in SU(2) and SU(5) theories has been undertaken and it has been shown that gravitating fundamental dyonic solutions and dyonic black holes are stable in both the cases.  相似文献   

19.
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there Js no black hole remnant at long times.  相似文献   

20.
It is shown that both the classical entropy of two-dimensional extremal LoweStrominger black hole and the quantum entropy of the scalar field in the background of this black hole are different by using Hawking's treatment as wel as Zaslavskii's treatment respectively. This result supports our previous suggestion that there are two kinds of extreme black holes in the nature. A new divergent term emerges in the quantum entropy in Zaslavskii's treatment and its physical meaning has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号