首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vibrational Spectroscopy》2010,52(2):226-237
Infrared spectra of the powdered (C3N2H5)5Bi2Cl11, (C3N2H5)5Bi2Br11and (C3N2H5)5Sb2Br11 crystals in the region of internal vibrations of the imidazolium cations (3600 and 400 cm−1) at the temperature intervals of 10–300 K, covering paraelectric–ferroelectric phase transitions, are presented and discussed in this paper. The research shows that the vibrational states of the imidazolium cations change markedly during the paraelectric–ferroelectric phase transition. The continuous nature of these transitions is well reflected in the infrared spectra, which is consistent with the previous X-ray and dielectric findings.  相似文献   

2.
We report the basis set dependencies and the basis set superposition errors for the hydrated complexes of K+ and Na+ ions in relation to the recent studies of the KcsA potassium channel. The basis set superposition errors are estimated by the geometry optimizations at the counterpoise-corrected B3LYP level. The counterpoise optimizations alter the hydration distances by about 0.02–0.03 Å. The enthalpies and free energies for K+ + n(H2O) → [K(H2O)n]+ and Na+ + n(H2O) → [Na(H2O)n]+ (n = 1–6) are compared between the theoretical and experimental values. The results show that the addition of diffuse functions to K, Na, and O species are effective. However, it is also found that the counterpoise corrections using diffuse functions work so as to underestimate the free energies for the complexes with increasing the hydration number. The stabilization energies in aqueous solution are larger for a Na+ ion than for a K+ ion, suggesting the contributions of their dehydration processes to the ion selectivity of the KcsA potassium channel. The changes in coordination distance between the isolated [K(H2O)8]+ and the [K(H2O)8]+ in the KcsA potassium channel indicate the importance of hydrogen bondings between the first hydration shell and the outer hydration shells.  相似文献   

3.
[(CH3)3C5H2NH][ClO4] has been synthesized and characterized by X-ray (at 344, 245, 180 and 115 K), calorimetric, dilatometric, dielectric and pyroelectric measurements. At room temperature the crystal structure is polar, space group Pmn21. It consists of discrete disordered [ClO4]- anions and ordered trimethylpyridinium cations giving the 3D network of hydrogen bonds. The compound reveals a rich polymorphism in the solid state. It undergoes four solid–solid phase transitions: from phases I to II at 356/327 K (heating/cooling), II→III at 346/326, III→IV at 226 K and IV→V at 182/170 K. [(CH3)3C5H2NH][ClO4] reveals a strong pyroelectric response over a wide temperature region (phases III, IV and V) with the spontaneous polarization changes (ΔPs) of the order of . The spontaneous polarization is irreversible over all the polar phases, however, the magnitude of the ΔPs in the vicinity of the phase transitions is characteristic of compounds with the ferroelectric order. The molecular mechanism of the successive phases transitions in the studied crystal is proposed.  相似文献   

4.
The crystal and molecular structure of potassium aquapentachloroiridate(III) (K2[Ir(H2O)Cl5]) was reported. The [Ir(H2O)Cl5]2− anions are nearly octahedral, the axial Ir–Cl bond (2.322(2) Å) being shorter than the equatorial ones (2.346(2)–2.360(2) Å); the Ir–O bond length is 2.090(4) Å. Ir(III) chloride complexes with 2,2′-bipyridine (LL = bpy) or 1,10-phenanthroline (LL = phen), of the general formulae K[Ir(LL)Cl4] and cis-[Ir(LL)2Cl2]Cl, were studied by far-IR and 1H–13C, 1H–15N HMBC/HMQC/HSQC–NMR. High-frequency 1H NMR coordination shifts (Δ1Hcoord = δ1Hcomplex − δ1Hligand; max. ca. +1 ppm) were noted for [Ir(LL)Cl4] anions, while for cis-[Ir(LL)2Cl2]+ cations they had variable sign and magnitude (max. ca. ±1 ppm); they were dependent on the proton position, being mostly expressed for the nitrogen-adjacent hydrogens (H(6) for bpy, H(2) for phen). 13C NMR signals were high-frequency shifted (by max. ca. 8 ppm), whereas all 15N nuclei were shifted to the lower frequency (by ca. 105–120 ppm). The experimental 1H, 13C, 15N NMR chemical shifts were reproduced by semi-empirical quantum-chemical calculations (B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*).  相似文献   

5.
《Solid State Sciences》2007,9(11):1036-1048
The structure of [C3N2H5]4[Bi2Br10]·2H2O, (PBB) was determined by single crystal X-ray diffraction at 100 K. It crystallizes in the monoclinic space group C2/m, with a = 12.992(4) Å, b = 16.326(5) Å, c = 8.255(3) Å, β = 108.56°(3), V = 1659.9(9) Å3 and Z = 2. The structure consists of discrete binuclear [Bi2Br10]4− anions, ordered pyrazolium cations and water molecules. The crystal packing is governed by strong N–H⋯O and weak O–H⋯Br hydrogen bonds. A sequence of structural phase transitions in PBB was established on the basis of differential scanning calorimetry and dilatometric studies. Two reversible first-order phase transitions were found: (I  II) at 381/371 K (on heating/cooling) and (II  III) at 348/338 K. Dielectric response near both phase transitions is characteristic of crystals with the “plastic-like” phases. Over the phase III a low frequency dielectric relaxator is disclosed. The possible molecular motions in the PBB compound are characterized by the 1H NMR studies. The infrared spectra of polycrystalline compound in the temperature range 300–380 K are reported for the region 4000–400 cm−1. The observed spectral changes through the structural phase transition III  II are attributed to an onset of motion both of the pyrazolium cations and water molecules.  相似文献   

6.
29Si NMR peaks due to species with the double four-membered ring siloxane backbone composed of both Si(O)4/2 and CH3Si(O)3/2 units, (CH3) n Si8O 20 – n /(8 – n) – (n=1–3), formed by co-hydrolysis of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions in methanol have been assigned. It has been found that 29Si NMR peaks due to Si(OSi)3(O) units shift to lower frequencies by replacement of the adjacent Si(O)4/2 units by CH3Si(O)3/2 units, in other words, with increasing m value in Si[OSi(O)3]3 – m [OSi(CH3) (O)2] m (O) (m=0–2). Peaks from CH3 Si(OSi)3 units in the species have also appeared as separated due to the kind of neighbor structural units. On the basis of the assignments, positions of CH3Si(O)3/2 units in the cubic octameric siloxane framework of (CH3) n Si8O 20 – n /(8 – n) – (n=2, 3), for both of which three isomers are present, have been estimated.  相似文献   

7.
The reaction of [Cp*2RuBr]+Br with bromine in CH2Cl2 (CD2Cl2) in an inert atmosphere at room temperature produces the complexes [Cp*Ru(Br)C5Me4CH2Br]+Br3 (syn conformer), [Cp*Ru(Br)C5Me3(CH2Br)2]+ (syn and anti conformers), and [Ru(Br)(C5Me4CH2Br)2]+ (syn conformer). All complexes were characterized by 1H and 13C NMR spectroscopy; the former complex, by elemental analysis. These complexes were also prepared by the reaction of [Cp*RuC5Me4CH2]+BF4 with bromine in CH2Cl2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2712–2718, December, 2005.  相似文献   

8.
The hydrothermal synthesis, using tris-(2-ethylamino)amine (tren) as a template, and the crystal structures of three new hybrid iron fluorides, (H3O)2·[H3tren]2·(FeF6)2·(FeF5(H2O))·2H2O (I), [H3tren]2·(FeF6)2·(FeF2(H2O)4)·8H2O (II) and [H3tren]2·(FeF6)·(F)3·H2O (III), are reported. I, II, and III are triclinic (P-1), monoclinic (P21/c) and orthorhombic (I222), respectively. The structure of I is built up from isolated FeF6 and FeF5(H2O) distorted octahedra separated by triprotonated [H3tren]3+ cations, disordered H3O+ cations and H2O molecules. In II, FeIIIF6 and neutral [FeIIF2(H2O)4] octahedra form, together with [H3tren]3+ cations, infinite (100) layers separated by extra water molecules. The structure of III consists of isolated and disordered FeF6 octahedra, fluoride anions F connected to [H3tren]3+ cations and extra fluoride anions F disordered with H2O molecules. All [H3tren]3+ cations have a “spider” type conformation. 57Fe Mössbauer characterization shows that +III valence state can only be considered for iron cations in I and III and preliminary Mössbauer results are consistent with the presence of both +II and +III valences for iron cations in II, in agreement with the crystallographic results.  相似文献   

9.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
Bi37InBr48: a Polar Subhalide with Bi95+ Polycations, Complex Bromobismuthate(III) Anions [Bi3Br13]4— and [Bi7Br30]9—, and Pentabromoindate(III) Anions [InBr5]2— Black crystals of Bi37InBr48 were synthesized from bismuth, indium and BiBr3 by cooling stoichiometric melts from 570 K to 470 K. X‐ray diffraction on powders and single‐crystals revealed that the compound crystallizes with space group P 63 (a = 2262.6(4); c = 1305.6(2) pm). The Bi95+ polycations in the polar crystal structure have the shape of heavily distorted tri‐capped trigonal prisms with approximate Cs symmetry. The high complexity of the structure results from three coexisting types of anionic groups: Three edge‐sharing [BiBr6] octahedra constitute the trigonal bromobismuthate(III) anion [Bi3Br13]4—. Four [BiBr6] and three [BiBr5] polyhedra share common vertices to form the [Bi7Br30]9— hemi‐sphere, in which the trigonal bipyramid of the pentabromoindat(III) ion [InBr5]2— is embedded.  相似文献   

11.
Y4MgSi3O13:Bi3+, Eu3+ nanophosphors have been prepared by a facile sol–gel method. The products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and fluorescence measurements. The results show that the nanophosphors are of single phase hexagonal Y4MgSi3O13 with size-distribution of 50–90 nm in diameter. White-light emission has been obtained from Bi3+ and Eu3+ co-doped Y4MgSi3O13 nanophosphors upon excitation of 350 nm ultraviolet light. It is noted that Bi3+ ions can occupy two different Y3+ sites and generate different emissions from the 3p1 → 1s0 transition. Warm white light has been obtained from Y4MgSi3O13:Bi3+, Eu3+ nanophosphors according to Commission International de I’Eclairage (CIE) chromaticity coordinates and color temperature (Tc) with appropriately adjusted contents of Bi3+ and Eu3+. The results indicate that Y4MgSi3O13:0.08Bi3+, 0.04Eu3+ (x = 0.31, y = 0.31, Tc = 6907 K) are potential nanophosphors for white light-emitting diodes (LEDs) applications.  相似文献   

12.
Shen  Zhen  Zuo  Jing-Lin  Shi  Fa-Nian  Xu  Yan  Song  You  You  Xiao-Zeng  Raj  S. Shanmuga Sundara  Fun  Hoong-Kun  Zhou  Zhong-Yuan  Che  Chi-Ming 《Transition Metal Chemistry》2001,26(3):345-350
Two bimetallic assemblies, K2[NiII(cyclam)]3[FeII(CN)6]2 · 12H2O (1) and [NiII(cyclam)]3[FeIII(CN)6]2 · 16H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane), were obtained by reaction of K4[Fe(CN)6] and [Ni(cyclam)](ClO4)2 in aqueous media at different temperatures. Their crystals were structurally determined and magnetic properties were studied. Both of the compounds have honeycomb-layered structures, which are formed by Fe6Ni6 units linked through the cyanide bridges. Structure (1) consists of polyanions containing NiII–NC–FeII linkages and K+ cations, while structure (2) is a two-dimensional neutral layer containing NiII–NC–FeIII linkages. The magnetic properties of (1) and (2) have been investigated in the 5–300 K range. Compound (1) exhibits a weak antiferromagnetic interaction with Weiss constant = –0.35 K; compound (2) shows ferromagnetic intralayer and antiferromagnetic interlayer interactions.  相似文献   

13.
The [Ph4Sb]4[Bi4Br16] complex was synthesized via reaction of tetraphenylantimony bromide with o-tolylbismuth bis(2,5-dimethylbenzenesulfonate) and studied using X-ray diffraction analysis. This compound has ionic structure and consists of tetraphenylstibonium cations and a four-charge tetranuclear anion [Bi4Br16]4– formed by two pairs of edge-sharing iBr6 octahedra. The Sb–C bond lengths are equal to 2.05(1)–2.10(1) Å, the Bi–Br distances lie within the 2.649(2)–3.246(2) Å range, and the Sb(1)···Br(7) distance is equal to 3.934(2) Å.  相似文献   

14.
By using pH-metric and conductometric methods it has been found that tetracycline (H3TC) forms with WO 4 2– and MoO 4 2– ions the following complex compounds: [WO3HTC]2–, [WO3(H2TC)2]2– and [MoO3(H2TC)2]2–. Stability constants log/gb 1 k =7.86 and log 1 k =7.80 for [WO3HTC]2– and [MoO3HTC]2–, respectively, have been calculated from pH-metric measurements.  相似文献   

15.
Two new -complexes of copper(I) halides with the 1,3-diallylbenzimidazolium cation, [C7H5N2(C3H5)2]+[Cu2Cl1.40Br1.60] and [C7H5N2(C3H5)2]+[Cu2Br3], have been synthesized and structurally defined (space group P2 1/c for both; a = 22.094(6), b = 9.272(8), c = 9.22(1) , = 118.26(4)° and a = 22.267(5), b = 9.311(3), c = 9.263(2) , = 117.51(2)°). The mutual effects of chlorine–bromine substitution and the efficiency of -interactions are discussed based on XRD data for these two compounds and for the compounds [C7H5N2(C3H5)2]+[Cu2Cl3] and [C7H5N2(C3H5)2]+[Cu2Cl0.67Br2.33] studied previously.  相似文献   

16.
The P3-nortricyclane 4-methyl-1,2,6-triphosphatricyclo[2.2.1.02,6]heptane, CH3C(CH2P)3, (1), is synthesized in a better yield than earlier described from P4, a Na/K alloy, and CH3C(CH2Br)3 in boiling 1,2-dimethoxyethane. It reacts withM(CO)5 thf (M=Cr, W) in the molar ratios of 1:1, 1:2, and 1:3 to form the pentacarbonylmetal complexes CH3C(CH2P)3[M(CO)5] n [n=1, 2, 3;M=Cr (a), W (b)], (2 a, b–4 a, b).1 gives with Mo(CO)5 thf only mixtures of CH3C(CH2P)3[Mo(CO)5] n andcis-Mo(CO)4 derivatives, which were identified by their infrared active A1 v(CO) modes at 2075 and 2025 cm–1.All the new compounds have been characterized also by their1H{31P},31P{1H} NMR, IR,Raman, and mass spectra.
  相似文献   

17.
Summary [NiL2X2] (L =N,N-dimethyl-1,2-ethanediamine; X = Cl, CF3CO 2 , CC13CO 2 and CBr3CO 2 ), [NiL2C2O4] · H2O and [NiL2X2] · 2 H2O (X = Br, 0.5 SO 4 2– and 0.5 SeO 4 ) have been synthesised and their thermal studies carried out. Thermally induced phase transition phenomena are noticed in [NiL2X2] (X = CF3CO 2 and CCl3CO 2 ) and their probable mechanisms are described. [NiL2X2] (X = Br, 0.5 SO 4 2– and 0.5 SeO 4 2– ) and [NiLX2] (X = Cl, 0.5 C2O 4 2– and 0.5 SO 4 2– ) have been prepared by solid state pyrolysis from the respective parent diamine complexes. [NiL2X2] have been made in solid state by temperature arrest technique from [NiL2(CX3CO2)2] (X = Cl and Br).  相似文献   

18.
Using aqueous GaCl3 and chloride containing Ga(ClO4)3 solutions measurements have been carried out to investigate the formation of complexes with mixed ligands beside the [GaCl4] ion. In contrast to the Raman spectra, which contain only the signals of the [GaCl 4 ] and the [Ga(H2O)6]3+ ion, the71Ga-NMR spectra give clear evidence for the existence of complexes with mixed ligands. Investigations at low temperatures showed their coordination to be octahedral resulting in species [GaCln(H2O)6–n ](3–n)+.  相似文献   

19.
N4-Methyl-4-nitrobenzaldehyde thiosemicarbazone (H4NO2Fo4M), N4-methyl-4-nitrobenzophenone thiosemicarbazone (H4NO2Bz4M) and their ruthenium(II) complexes [Ru(4NO2Fo4M)2(PPh3)2] (1), [Ru(4NO2Bz4M)2(PPh3)2] (2), [Ru(4NO2Fo4M)2(dppb)] (3) and [Ru(4NO2Bz4M)2(dppb)] (4) (dppb = 1,4-bis(diphenylphospine)butane) were obtained and characterized. The crystal structure of H4NO2Fo4M has been determined. Electrochemical studies have shown that the nitro anion radical, one of the proposed intermediates in the mechanism of action of nitro-containing anti-trypanosomal drugs, is formed at approximately −1.00 V in the free thiosemicarbazones as well as in their corresponding ruthenium(II) complexes, suggesting their potential to act as antitrypanosomal drugs. The natural fluorescence of H4NO2Fo4M, H4NO2Bz4M and complexes (1)–(4) provides a way to identify and to monitor their concentration in biological systems.  相似文献   

20.
Recombination rate coefficients of protonated and deuterated ions KrH+, KrD+, XeH+ and XeD+ were measured using Flowing Afterglow with Langmuir Probe (FALP). Helium at 1600 Pa and at temperature 250 K was used as a buffer gas in the experiments. Kr, Xe, H2 and D2 were introduced to a flow tube to form the desired ions. Because of small differences in proton affinities of Kr, D2 and H2 mixtures of ions, KrD+/D3+ and KrH+/H3+ are formed in the afterglow plasma, influencing the plasma decay. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The obtained rate coefficients, αKrD+(250 K) = (0.9 ± 0.3) × 10−8 cm3 s−1 and αXeD+(250 K) = (8 ± 2) × 10−8 cm3 s−1 are compared with αKrH+(250 K) = (2.0 ± 0.6) × 10−8 cm3 s−1 and αXeH+(250 K) = (8 ± 2) × 10−8 cm3 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号