共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional emission patterns of secondary electrons from graphene layers formed on SiC(0 0 0 1)
We used spectroscopic photoemission and low-energy electron microscopy to measure two-dimensional (2D) emission patterns of secondary electrons (SEs) emitted from graphene layers formed on SiC(0 0 0 1). The 2D SE patterns measured at the SE energies of 0-50 eV show energy-dependent intensity distributions in the 6-fold symmetry. The SE patterns exhibit features ascribed to energy band structures of 2D free electrons, which would prove that electrons are partially confined in thin graphene layers even above the vacuum level. 相似文献
2.
Work function, valence band and 28Si− secondary ion intensity variations from various Si substrates sputtered by 1 keV Cs+ at 60° were measured. Oxide free Si wafers and native oxide terminated wafers did not reveal any appreciable valence band variations close to the Fermi edge. Their work functions however, decreased substantially with an exponential trend noted between this and Si− secondary ion intensities from the O free Si wafer. This is consistent with the electron tunneling model which assumes a resonance charge transfer process. Native oxide terminated wafers exhibited deviations from this exponential trend, while Si wafers with thicker oxides revealed the growth of sub-band features in the valence band spectra on sputtering with Cs+. These features, may partially, if not fully, explain the Cs+ induced enhancement effect noted on SiO2 substrates where work function based models are not applicable. 相似文献
3.
Evolution of Si (1 0 0) surface under 100 keV Ar+ ion irradiation at oblique incidence has been studied. The dynamics of surface erosion by ion beam is investigated using detailed analysis of atomic force microscopy (AFM) measurements. During an early stage of sputtering, formation of almost uniformly distributed nano-dots occurs on Si surface. However, the late stage morphology is characterized by self-organization of surface into a regular ripple pattern. Existing theories of ripple formation have been invoked to provide an insight into surface rippling. 相似文献
4.
H.P. Marques A.R. Canário A.M.C. Moutinho O.M.N.D. Teodoro 《Applied Surface Science》2009,255(16):7389-7393
In surface science, rutile TiO2 continues to be one of the most studied surfaces and in the catalysis field numerous groups study how adsorbates interact with this surface. All groups face the difficult problem of reproducibility due to surface preparation unknowns like defect concentration and the continuous aging of the crystals. Recent studies, using STM imaging, showed that hydroxyl adsorption takes place even in very good vacuum conditions. Upon adsorption, the surface electric field is reduced and the work function decreases. We found that this change may be readily detected in the onset energy of the secondary electrons. By following the onset region of secondary electron emission it is possible to track hydroxyl adsorption in quantities well below the detection level of XPS and LEIS. With this knowledge, we show that the time elapsed after surface preparation and water partial pressure should be accounted in the study of TiO2 surfaces. 相似文献
5.
Y. Huang D.J.H. Cockayne C. Marsh J.M. Titchmarsh A.K. Petford-Long 《Applied Surface Science》2005,252(5):1954-1958
A method using a focused ion beam (FIB) to prepare a silicon amorphous material is presented. The method involves the redeposition of sputtered material generated during the interaction of the Ga+ ion beam with a silicon substrate material. The shape and dimensions of this amorphous material are self-organized and reproducible. The stability of this amorphous material under electron irradiation was investigated in the transmission electron microscopy (TEM). Electron irradiation can induce recrystallization of the amorphous material, resulting in the lateral and vertical growth, starting at an amorphous-crystalline interface, of polysilicon containing defects. 相似文献
6.
Mahesh Kumar Mohana K. RajpalkeBasanta Roul Thirumaleshwara N. BhatNeeraj Sinha A.T. KalghatgiS.B. Krupanidhi 《Applied Surface Science》2011,257(6):2107-2110
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). 相似文献
7.
Adsorption of alkali atoms on the (1 1 1) and (1 0 0) noble metal surfaces has been shown recently to induce long-lived resonances located inside the surface projected band gap. However, the width of these resonances, as it appears in two-photon photo-emission experiments, is much larger than the inverse of their lifetime. We report on a theoretical study of some broadening mechanisms of these resonance lines in the Na/Cu(1 1 1) and Cs/Cu(1 1 1) systems at low coverage, including the homogeneous natural line broadening and the inhomogeneous statistical broadenings due to the distribution of adsorption heights associated to the quantal vibration of the alkali adsorbate and to the lateral disorder of alkali adsorption on the surface. The inhomogeneous mechanisms are shown to induce a very large broadening of the resonance line, in quantitative agreement with experimental results. The most important broadening effect appears to be the effect of the distribution of alkali adsorption heights. 相似文献
8.
The interplay between swelling and milling phenomena in determining the morphology of Focused Ion Beam (FIB) -processed MgO(0 0 1) was investigated by atomic force microscopy. At the early stages of ion irradiation, before milling erosion is observed, MgO shows a relevant swelling behaviour with protrusion of the bombarded areas up to 6 nm for a dose of 5 × 1016 ions cm−2. The effect is mainly ascribed to subsurface defect accumulation, while the low Ga ions concentration, as measured by in-depth Auger analysis, seems to exclude a contribution from ion implantation. In order to explain and control the morphology of Fe/NiO FIB patterned sub-micron structures on MgO substrates, we have also investigated FIB effects on Fe(0 0 1) and NiO(0 0 1) single crystals. Absent or negligible swelling has been observed on these materials. 相似文献
9.
The effect of surface reconstruction on contrast in scanning electron microscopy of the Si(1 0 0)-2 × 1 surface is investigated. A theory of the initial secondary production rate is developed and an upper bound on the rate is shown to depend on the product of the integrated intensities of the initial and final RHEED states. These states are calculated with a reflection matrix method and their depth dependence is investigated. The results are used to analyse scanning electron microscopy contrast in images of 1 × 2- and 2 × 1-regions of the Si(1 0 0)-2 × 1 surface reported by Watanabe et al. The calculated integrated intensities are consistent with the experimental images and with the experimentally observed dependence of the contrast on the azimuth of the incident electron beam. This supports the idea that the observed contrast is caused by the effect of surface reconstruction on the RHEED states. 相似文献
10.
Diffraction in electron stimulated desorption has revealed a propensity for Cl+ desorption from rest atom vs. adatom areas and unfaulted vs. faulted zones of Cl-terminated Si(1 1 1)-(7 × 7) surfaces. We associate the 15 eV ± 1 eV threshold with ionization of Si-Cl σ-bonding surface states and formation of screened two-hole states with Si 3s character. Similar specificity is observed from A and B reconstructions. This can be due to reduced screening in unfaulted regions and increased hole localization in Si back-bonds within faulted regions. 相似文献
11.
We have studied the energy exchange between hyperthermal (5-100 eV) Cs+ projectiles and a Pt(1 1 1) surface by measuring the kinetic energy of the scattered ions. The scattering geometry was chosen to be in-plane with specular scattering angles, and the energy of the scattered ions was analyzed as functions of incidence energy and angle. For low incidence energy (<40 eV), the energy transfer to the Pt surface is substantially enhanced due to the attractive image charge force between Cs+ and the surface. The image charge effects are highlighted by the different energy transfer on Pt(1 1 1) and Si(1 1 1) surfaces. Analysis of the experimental results using two- and three-dimensional theoretical models revealed a well depth of 1 eV for the image charge potential. Hyperthermal Cs+ ions scatter from Pt(1 1 1) predominantly via double collisions with Pt atoms, though the scattering phenomena are insensitive to the impact site at the surface. 相似文献
12.
The influence of the primary ion species (He+, Ne+, Ar+, Kr+, Xe+ and SF5+) and substrate material (graphite, Al, Cu, Ag and Pb) on the secondary ion emission from molecular overlayers of the purine base adenine was investigated in dependence on the layer thickness. The measurements showed an increasing yield with increasing mass of the primary ions and its number of constituents. The yield enhancement, defined as the ratio between the maximum yield obtained from approximately a monolayer coverage of adenine to the yield obtained from a multilayer coverage, was shown to depend on the substrate material. However, a clear dependence on the primary ion species was not found. 相似文献
13.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed. 相似文献
14.
We studied the reactive ion scattering (RIS) of Cs+ from a Pt(1 1 1) surface adsorbed with CO and CO2 leading to the emission of CsCO+ and . The RIS products were measured as functions of adsorbate coverage and ion incidence energy for the range of 10-60 eV. The yield and cross-section for the RIS processes were extracted from these measurements. The RIS cross-section is higher for weakly adsorbed CO2 than for more strongly bound CO. The RIS energy-dependence shows a maximum at 15-20 eV and a decrease at higher energy. These observations provide evidence for the theoretically proposed mechanism of RIS, in which a slow Cs+ picks up an adsorbate in an Eley-Rideal abstraction reaction. 相似文献
15.
N.W. Ghonaim M. Nieradko L. Xi J.T. Francis K.K.C. Yeung Leo W.M. Lau 《Applied Surface Science》2008,255(4):1029-1032
The nondestructive nature of static secondary ion mass spectrometry (SIMS) in the context of studies of self-assembled monolayers (SAMs) of organic molecules has been examined by measuring the primary ion fluence dependence of secondary ion signals with two well-known SAMs, C18H37SH on Au(1 1 1) and C18H37PO3H2 on freshly cleaved mica. This SIMS analysis is challenging because the bonding nature is delicate and the areal molecular density is less than 1015 cm−2. In SIMS, it is prevalently assumed that if the primary ion fluence is confined to not more than 1 × 1012 cm−2, all secondary ion signals should not change by more than 10% and the practically defined static condition is satisfied. Our results from time-of-flight SIMS with the common primary ions of Bi3+, Bi+ and Ar+, indicate that this prevalent static assumption fails for both model SAMs. The SIMS results from the phosphyl case, which have been recently published, consistently display the evidence of bombardment-induced damage. In comparison, the thiol case presented here shows much more complex primary ion fluence dependence of SIMS signals. It is therefore concluded that practical static analysis should use primary ion fluence not more than 1 × 1011 cm−2 or should simply record and report the effects of primary ion fluence. 相似文献
16.
Using the techniques of scanning tunnelling microscopy (STM) and medium energy ion scattering (MEIS), we examine the growth and annealing behaviour of ultrathin Ni films on Au{1 1 1} at 300 K. As has been shown previously, submonolayer growth of Ni on Au{1 1 1} is strongly influenced by the presence of the herringbone reconstruction with two-dimensional clusters nucleating at herringbone elbows. Second layer growth commences prior to the completion of the monolayer. After multiple layers have been deposited, the surface morphology retains a similar cluster-like appearance. Annealing produces surfaces exhibiting long range Moiré structures and, at higher temperature, triangular misfit dislocations. We use MEIS to examine the composition and structure of these surface alloy phases and conclude that in each case, they consist of an essentially pure Au surface layer on a bimetallic second layer. 相似文献
17.
We studied optical second harmonic generation (SHG) oscillations during the growth of Ag films on Si(1 1 1) 7 × 7 clean and H-terminated surfaces. In the growth on the 7 × 7 surfaces at room temperature, the second and third peaks of the oscillation shift towards the thinner side with an increase in pump photon energy. Our analysis revealed that these peaks are caused by two-photon resonant transitions from the n = 1 and 2 occupied quantum well states (QWSs) in the Ag film to the Ag/Si interface at 1.9 eV above the Fermi level (Ef). In Ag growth on the hydrogen-terminated surfaces, the SHG oscillation was similar to that on the 7 × 7 surfaces at room temperature. However, the QWS-related peak was suppressed in the growth at 300 °C. This is attributed to an inhibited intrusion of the interface state into the Ag layers. 相似文献
18.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed. 相似文献
19.
Density functional theory is used to predict workfunctions, φ. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba2+, O2−, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the sameφ to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low φ of 1.3 V (LDA), but 2 ML of rocksalt BaO also has φ at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO. 相似文献
20.
With the help of two kinds of similarity transformations connected with the elliptic equation, at first we analytically derive spatiotemporal self-similar solutions of the (3 + 1)-dimensional inhomogeneous nonlinear Schrödinger equation with the linear and nonlinear gain. Then we give out the mutually exclusive parameter domains for bright and dark similaritons. Finally, we discuss nonlinear tunneling effects for spatiotemporal similaritons passing through the nonlinear barrier or well. Results show that bright and dark similaritons in the normal and anomalous dispersion regions have opposite dynamic behaviors. 相似文献