首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the adherence of DLC films, interlayers of amorphous hydrogenated carbon (a-C:H) and titanium nitride (TiN) were deposited by means of the pulsed vacuum arc technique. Bilayers were obtained by using a carbon target of 99.98% of purity in mixtures of (Ar + CH4) and (Ar + H2) for producing a-C and DLC, respectively and a target of titanium of 99.999% in a mixture of (Ar + N2) for growing TiN. After the deposition, chemical and morphological differences between TiN/DLC and a-C:H/DLC bilayers grown on silicon and stainless steel 304 were studied using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and scanning probe microscopy (SPM) techniques. XPS analysis showed a difference in sp3/(sp2+sp3) bonds ratio for each bilayer, being 0.67 for TiN/DLC and 0.45 for a-C:H/DLC bilayers. sp3 and sp2 bonds were also observed by the FTIR technique. SPM images, in atomic force microscopy (AFM) and lateral force microscopy (LFM) modes were carried out for illustrating the comparison between TiN/DLC and a-C/DLC morphologic characteristics. Roughness and grain size were studied as a function of the H2 concentration for both bilayers.  相似文献   

2.
Nano-structured titanium nitride (TiN) thin film coating is deposited by reactive sputtering in cylindrical magnetron device in argon and nitrogen gas mixtures at low temperature. This method of deposition using DC cylindrical magnetron configuration provides high uniform yield of film coating over large substrate area of different shapes desirous for various technological applications. The influence of nitrogen gas on the properties of TiN thin film as suitable surface protective coating on bell-metal has been studied. Structural morphological study of the deposited thin film carried out by employing X-ray diffraction exhibits a strong (2 0 0) lattice texture corresponding to TiN in single phase. The surface morphology of the film coating is studied using scanning electron microscope and atomic force microscope techniques. The optimized condition for the deposition of good quality TiN film coating is found to be at Ar:N2 gas partial pressure ratio of 1:1. This coating of TiN serves a dual purpose of providing an anti-corrosive and hard protective layer over the bell-metal surface which is used for various commercial applications. The TiN film's radiant golden colour at proper deposition condition makes it a very suitable candidate for decorative applications.  相似文献   

3.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

4.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

5.
Diamond-like carbon films (DLC) were deposited on titanium substrates in acetonitrile and N,N-dimethyl formamide (DMF) liquids by the liquid-phase electrodeposition technique at ambient pressure and temperature. The applied voltage between the electrodes was high (1200 V) due to the use of resistive organic liquids. The surface morphology was examined by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Corrosion performance of the coatings was investigated by potentiodynamic polararization tests in phosphate buffer saline solution. Raman spectroscopy analysis of the films revealed two broad bands at approximately 1360 cm−1 and 1580 cm−1, related to D and G-band of DLC, respectively. The coated Ti was tested in a ball-on-plate type wear test machine with Al2O3 balls. The films presented a low friction coefficient (about 0.1), and the films deposited from DMF presented the best wear resistance.  相似文献   

6.
Carbon nanofibers were grown by electrodeposition technique onto aligned zinc oxide (ZnO) nanorods deposited by hybrid wet chemical route on glass substrates. X-ray diffraction traces indicated very strong peak for reflections from (0 0 2) planes of ZnO. The Raman spectra were dominated by the presence of G band at about 1597 cm−1 corresponding to the E2g tangential stretching mode of an ordered graphitic structure with sp2 hybridization and a D band at about 1350 cm−1 originating from disordered carbon. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peak at ∼511 cm−1 for Zn-O stretching mode. Photoluminescence spectra indicated band edge luminescence of ZnO at ∼3.146 eV along with a low intensity peak at ∼0.877 eV arising out of carbon nanofibers. Field emission properties of these films and their dependence on the CNF coverage on ZnO nanorods are reported here. The average field enhancement factor as determined from the slope of the FN plot was found to vary between 1 × 103 and 3 × 103. Both the values of turn-on field and threshold field for CNF/ZnO were lower than pure ZnO nanorods.  相似文献   

7.
Thin GaAs films were prepared by pulse plating from an aqueous solution containing 0.20 M GaCl3 and 0.15 M As2O3 at a pH of 2 and at room temperature. The current density was kept as 50 mA cm−2 the duty cycle was varied in the range 10-50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm−2 illumination, an open circuit voltage of 0.5 V and a short circuit current density of 5.0 mA cm−2 were observed for the films deposited at a duty cycle of 50%.  相似文献   

8.
The aim of this work is to study the electrochemical behavior, under a corrosion-erosion condition, of [TiN/AlTiN]n multilayer coatings with bilayers periods of 1, 6, 12 and 24, deposited by a magnetron sputtering technique on Si (1 0 0) and AISI 1045 steel substrates.The TiN and AlTiN structure for multilayer coatings were evaluated via X-ray diffraction (XRD) analysis. Silica particles were used as an abrasive in the corrosion-erosion test within a 0.5 M H2SO4 solution at an impact angle of 30° over the surface. The electrochemical characterization was carried out using a polarization resistance technique (Tafel), in order to observe changes in the corrosion rate as a function of the bilayers number (n) or bilayer period (Λ). Corrosion rate values of 359 mpy in uncoated steel substrate and 1.016×10−6 mpy for substrate coated with [TiN/AlTiN]24 under impact angle of 30° were found. This behavior was related with the mass loss curve for all coatings and the surface damage was analyzed using SEM images. These results indicate that TiN/AlTiN multilayer coatings deposited on AISI 1045 steel provide a practical solution for applications in erosive-corrosive environments.  相似文献   

9.
An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm−1 (-OH vibration), 1664 cm−1 (Amide I), 1165 cm−1 (νas, C-O-C bridge), and the broad absorption bands between 958 cm−1 and 1155 cm−1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.  相似文献   

10.
Surface phenomena of HA/TiN coatings on the nanotubular-structured beta Ti-29Nb-5Zr alloy for biomaterials have been investigated by several experimental methods. The nanotubular structure was formed by anodizing the Ti-29Nb-5Zr alloy in 1 M H3PO4 electrolytes with 1.0 wt.% NaF at room temperature. Hydroxyapatite (HA)/titanium nitride (TiN) films were deposited on Ti-29Nb-5Zr alloy specimens using a magnetron sputtering system. The HA target was made of human tooth-ash by sintering at 1300 °C for 1 h, and the HA target had an average Ca/P ratio of 1.9. The HA/TiN depositions were performed, using the pure HA target, on Ti-29Nb-5Zr alloy following the initial deposition of a TiN buffer layer coating. Microstructures and nanotubular morphology of the coated alloy specimens were examined by FE-SEM, EDX, XRD, and XPS. The Ti-29Nb-5Zr alloy substrate had small grain size and preferred orientation along the drawing direction. The HA/TiN coating was stable with a uniform morphology at the tips of the nanotubes.  相似文献   

11.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

12.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

13.
Tin dioxide (SnO2) thin films were deposited by plasma enhanced-atomic layer deposition (PE-ALD) on Si(1 0 0) substrate using dibutyl tin diacetate (DBTA) ((CH3CO2)2Sn[(CH2)3-CH3]2) as precursor. The process parameters were optimized as a function of substrate temperature, source temperature and purging time. It is observed that the surface phenomenon of the thin films was changed with film thickness. Atomic force microscopy (AFM) images and X-ray diffraction (XRD) pattern were used to observe the texture and crystallanity of the films. The films deposited for 100, 200 and 400 cycles were characterized by XPS to determine the chemical bonding properties. XPS results reveal that the surface dominant oxygen species for 100, 200 and 400 cycles deposited films are O2, O and O2−, respectively. The 200 cycles film has exhibited highest concentration of oxygen (O) species before and after annealing. Conductivity studies revel that this film has best adsorption strength to the oxygen ions forming on the surface. The sensor with 200 cycles SnO2 thin film has shown highest sensitivity to CO gas than other films. A correlation between the characteristics of Sn3d5/2 and O1s XPS spectra before and after annealing and the electrical behavior of the SnO2 thin films is established.  相似文献   

14.
Surfaces of two gamma-TiAl alloys, Ti-47%Al-2%Nb-2%Cr (MJ12) and Ti-47%Al-2%Nb-2%Mn + 0.8%TiB2 (MJ47), were modified by acetylene plasma deposition at −3 kV bias voltage for 0.5-4 h. By using GIXRD and SAED, C (n-diamond), TiC, Al, AlTi, AlTi2, AlTi3, Al0.64Ti0.36 and Al2Ti were detected on both alloys. Additional TiB2 was detected on MJ47. XPS and Raman analyses revealed the presence of sp3 and sp2 carbon deposited on the alloy surfaces with their binding energies of 283.9-284.8 eV for MJ12 and 283.9-285.0 eV for MJ47. Both sp3 and sp2 contents were increased with the increase in the exposure times. The increasing rate of the first was less than that of the second, due to the stress developed in the films. Moiré fringe and crystallographic planes were detected using TEM. Knoop hardness of the deposited alloys, influenced by sp3 carbon, was increased with the increase in the exposure time. Those of MJ12 and MJ47 with 4 h deposition are 1.88 and 1.57 times of the corresponding untreated alloys, respectively.  相似文献   

15.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

16.
TiO2 thin films were deposited on the glass substrates by dc reactive magnetron sputtering technique at different sputtering pressures (2 × 10−3 to 2 × 10−2 mbar). The films prepared at low pressures have an anatase phase, and the films prepared at high pressures have an amorphous phase. The optical properties were studied by measuring the transmittance and the ellipsometric spectra. The optical constants of the films in the visible range were obtained by fitting the transmittance combined with the ellipsometry measurements using the classical model with one oscillator. The refractive index of the films decreases from 2.5 until 2.1 as the sputtering pressure increases from 2 × 10−3 to 2 × 10−2 mbar. The films prepared at the pressure higher than 6 × 10−3 mbar show a volume inhomogeneity. This volume inhomogeneity has been calculated by fitting the transmittance and the ellipsometric spectra. The volume inhomogeneity of the film prepared at the highest sputtering pressure is about 10%. Although the films prepared at high pressures show a large volume inhomogeneity, they have low extinction coefficients. It is suggested that the anatase phase results in more light scattering than amorphous phase does, and then a high extinction coefficient.  相似文献   

17.
Ti6Al4V alloy was implanted with nitrogen-oxygen mixture by using plasma based ion implantation (PBII) at pulsed voltage −10, −30 and −50 kV. The implantation was up to 6 × 1017 ions/cm2 fluence. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS and nanoindentation measurements. According to XPS, it was found that the modified layer was predominantly TiO2, but contained small amounts of TiO, Ti2O3, TiN and Al2O3 between the outmost layer and metallic substrate. Surface hardness and wear resistance of the samples increased significantly after PBII treatment, the wear rate of the sample implanted N2-O2 mixture at −50 kV decreased eight times than the untreated one. The sample implanted N2-O2 mixture showed better wear resistance than that of the sample only implanted oxygen at − 50 kV. The wear mechanism of untreated sample was abrasive-dominated and adhesive, and the wear scar of the sample implanted at −50 kV was characterized by abrasive wear-type ploughing.  相似文献   

18.
Silicon oxynitride thin films were deposited by reactive r.f. sputtering from a silicon target. Different Ar:O2:N2 gas atmospheres were used at fixed power density (3.18 W cm−2) and pressure (0.4 Pa) to obtain various film composition. Pt-SiOxNy-Pt sandwich type structure was realised for electrical property investigations. The C-V measurements showed the absence of a Schottky barrier and thus confirmed that Pt electrode provides an ohmic contact. The evolution of the current density showed a decrease of the film conductivity when the oxygen concentration in the films increases. The various layer composition leads to two different conduction mechanisms which were identified as space charge limited current (SCLC) and Poole-Frenkel effect. Finally, the structural defects of the films were studied by EPR analysis and the spin densities were correlated to both the composition and the electrical behaviour of the films.  相似文献   

19.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

20.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号