共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at Ts ≤ 450 °C were amorphous; while those produced at Tsub = 500 °C were polycrystalline α-Fe2O3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe2O3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO4. 相似文献
2.
Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films 总被引:1,自引:0,他引:1
Yun Zhang Yue Shen Feng Gu Mingming Wu Yian Xie Jiancheng Zhang 《Applied Surface Science》2009,256(1):85-89
Fe-doped mesoporous titanium dioxide (M-TiO2-Fe) thin films have been prepared on indium tin oxide (ITO) glass substrates by sol–gel and spin coating methods. All films exhibited mesoporous structure with the pore size around 5–9 nm characterized by small angle X-ray diffraction (SAXRD) and further confirmed by high resolution transmission electron microscopy (HRTEM). Raman spectra illustrated that lower Fe-doping contributed to the formation of nanocrystalline of M-TiO2-Fe thin films. X-ray photoelectron spectroscopy (XPS) data indicated that the doped Fe ions exist in forms of Fe3+, which can play a role as e− or h+ traps and reduce e−/h+ pair recombination rate. Optical properties including refractive indices/n, energy gaps/Eg and Urbach energy width/E0 of the thin films were estimated and investigated by UV/vis transmittance spectra. The presence of Fe content extended the light absorption band and decreased the values of n, implying enhanced light response and performance on dye-sensitized solar cells (DSSC). The optimum Fe content in M-TiO2-Fe thin films is determined as 10 mol%, for its compatibility of well crystalline and well potential electron transfer performance. 相似文献
3.
A.M. Torres-Huerta M.A. Domínguez-Crespo J.R. Vargas-García 《Applied Surface Science》2009,255(9):4792-4795
The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces. 相似文献
4.
Manil KangEunji Oh Inkoo KimSok Won Kim Ji-Wook RyuYong-Gi Kim 《Current Applied Physics》2012,12(2):489-493
The V2O5 films were prepared by an RF sputtering method, and the amorphous films were colored by an UV excimer laser. The crystallinity of the as-grown V2O5 film was degenerated greatly by laser irradiation, as determined by X-ray diffraction (XRD) and Raman studies. The transmission and complex refractive index spectra of the V2O5 film were affected by variations in the microstructure, including the surface morphology, crystalline structure, and substoichiometry with an oxygen deficiency. Considerable emissions due to oxygen vacancies and band transition of photoluminescence (PL) peaks were observed, and the peaks were significantly changed after laser irradiation. The variations in the optical properties in both films may be attributed to oxygen deficiency induced by laser irradiation. 相似文献
5.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure. 相似文献
6.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions. 相似文献
7.
Uniform and crack free polycrystalline lutetium oxide (Lu2O3:(Eu,Pr)) films were fabricated by Pechini sol-gel method combined with the spin-coating technique. X-ray diffraction (XRD) and atomic force microscope (AFM) characterizations indicated that the obtained film was composed of polycrystalline cubic Lu2O3 phase with an average grain size around 30 nm. The photoluminescence(PL) spectra and decay performances of the Lu2O3:5 mol% Eu films co-doped by 0-0.5 mol% Pr3+ with different concentrations were characterized. It was found that the afterglow was reduced obviously due to the introduction of 0-0.5 mol% Pr3+ in the Lu2O3:5 mol% Eu films coupled by decrease in the emission intensity at 612 nm. The mechanism of afterglow diminishing was discussed based on the thermoluminescence measurements. 相似文献
8.
Sodky Hamed Mohamed 《哲学杂志》2013,93(27):3598-3612
Oxygen-deficient (OD) and nearly stoichiometric (NST) ZnO and In2O3 nanowires/nanoparticles were synthesized by chemical vapor deposition on Au-coated silicon substrates. The OD ZnO and OD In2O3 nanowires were synthesized at 750 and 950°C, respectively, using Ar flow at ambient pressure. A mixture of flowing Ar and O2 was used for synthesizing NST ZnO nanowires and NST In2O3 nanoparticles. Growth of OD ZnO nanowires and NST In2O3 nanoparticles was found to be via a vapor–solid (VS) mechanism and the growth of NST ZnO nanowires was via a vapor–liquid–solid mechanism (VLS). However, it was uncertain whether the growth of OD In2O3 nanowires was via a VS or VLS mechanism. The optical constants, thickness and surface roughness of the prepared nanostructured films were determined by spectroscopic ellipsometry measurements. A three-layered model was used to fit the calculated data to the experimental ellipsometric spectra. The refractive index of OD ZnO, NST ZnO nanowires and NST In2O3 nanoparticles films displayed normal dispersion behavior. The calculated optical band gap values for OD ZnO, NST ZnO, OD In2O3 nanowires and NST In2O3 nanoparticles films were 3.03, 3.55, 2.81 and 3.52?eV, respectively. 相似文献
9.
Yusuke Iida 《Applied Surface Science》2007,254(2):468-472
V-W-Nd mixed-oxide films were prepared by pulse-laser deposition (PLD) technique from the targets sintered at different temperatures. X-ray photoelectron spectroscopy (XPS) data indicate that the films fabricated from the targets sintered at low temperature were composed of various mixed valences. Raman spectroscopy shows that V-W-Nd films were composed of the vanadates as NdVO4, and the W6+ doping supplements the formation of vanadate. Atomic force microscopy (AFM) image of the films fabricated from the target sintered at 923 K reveals the average particle size is estimated around 86 nm. The surface morphology of the films roughness shows a dramatic change at 923-943 K. 相似文献
10.
Rached Salhi Ramzi Maalej Yannick Guyot Laetitia Rapenne Jean-Luc Deschanvres 《Journal of luminescence》2011,131(11):2311-2316
Erbium-doped Y2O3 films were prepared by aerosol-UV assisted metal-organic chemical vapour deposition (MOCVD) at 410 °C. The effects of humidity of carrier gas and UV-assistance on their structure and optical properties were investigated on the as-deposited and thermal annealed films using infrared spectroscopy, X-ray diffraction and transmission electron microscopy. It was found that the as-deposited Er:Y2O3 films crystallise in the Y2O3 cubic structure and present a very low organic contamination when the deposition takes place under high air humidity and, even better, with UV-assistance. After annealing, two different structural phases are observed corresponding to the cubic and the monoclinic structures of Y2O3. The Er3+ luminescence analysed in the visible and IR regions, shows the classical green transitions. The best optical properties were obtained with as-deposited and annealed Er:Y2O3 films grown under high air humidity with UV-assistance. Under such deposition conditions, 4I13/2 lifetimes was found to be 3.07 and 6.1 ms for films annealed at 800 and 1000 °C, respectively, and up-conversion phenomena were underlined. This indicates that the deposition conditions, in particular air humidity, play an important role in the luminescent properties even after annealing. 相似文献
11.
The sol-gel dip-coating method is used for the preparation of MoO3 thin films. The 6 layered MoO3 films were prepared and annealed at various temperatures in the range of 200-350 °C. The band gap value for MoO3 films were calculated from optical absorption measurements and it is in the range of 3.55-3.73 eV. XRD spectrum reveals (0 2 0) is the major diffraction plane for the films prepared above 250 °C, which reveals the formation of MoO3 in α-orthorhombic phase. The films prepared at 200 °C and 250 °C exhibits amorphous nature. The FTIR spectrum confirms the presence of Mo-O-Mo and MoO bonds. Nanorods were observed in the SEM images in the case of MoO3 films prepared above 250 °C. The films prepared at 250 °C exhibit maximum anodic diffusion coefficient of 9.61 × 10−11 cm2/s. The same film exhibits the change in optical transmission of 58.4% at 630 nm with the optical density of 0.80. 相似文献
12.
Cobalt oxide thin films were prepared by a facile spray pyrolysis technique, using a perfume atomizer with an aqueous solution of hydrated cobalt chloride salt with a molar concentration of 0.025?M as a source of cobalt. The films were deposited onto glass substrates at temperature of 350?°C. The structural, morphological, and electrochromic properties of the obtained films were studied. It was found from X-ray diffraction analysis that the films were polycrystalline in nature with spinel-type cubic structure and preferred orientation along [111] direction. The Scanning Electron Microscopy images revealed a porous structure with the average grain size around 200?nm. The cyclic voltammetry measurements revealed that Cobalt oxide thin film is an anodically coloring electrochromic material with a transmittance variation in the visible range of 31%, and a fast response time (about 2?seconds) and a good cycling stability. These electrochromic performances make cobalt oxide thin film an attractive material for using as an anodic electrochromic material in smart windows devices. The photoluminescence spectra exhibited a strong emission in the visible region confirming the good crystallinity properties of Co3O4 thin films. 相似文献
13.
Zinc peroxide and zinc oxide nanoparticles were prepared and self-assembled hybrid nanolayers were built up using layer-by-layer (LbL) technique on the surface of glass substrate using the layer silicate hectorite and an anionic polyelectrolyte, sodium polystyrene sulfonate (PSS). Light absorption, interference and morphological properties of the hybrid films were studied to determine their thickness and refractive index. The influence of layer silicates and polymers on the self-organizing properties of ZnO2 and ZnO nanoparticles was examined. X-ray diffraction revealed that ZnO2 powders decomposed to ZnO (zincite phase) at relatively low temperatures (less than 200 °C). The optical thickness of the films ranged from 190 to 750 nm and increased linearly with the number of layers. Band gap energies of the ZnO2/hectorite films were independent from the layer thickness and were larger than that of pure ZnO2 nanodispersion. Decomposition of ZnO2 to ZnO and O2 at 400 °C resulted in the decrease of the band gap energy from 3.75 to 3.3 eV. Concomitantly, the refractive index increased in correlation with the formation of the zincite ZnO phase. In contrast, the band gap energies of the ZnO2/PSS hybrid films decreased with the thickness of the nanohybrid layers. We ascribe this phenomenon to the steric stabilization of primary ZnO2 particles present in the confined space between adjacent layers of hectorite sheets. 相似文献
14.
Zn-doped sprayed thin films have been grown on binary In2S3 substrates under the mean temperature (Td = 320 °C). Further studies Amlouk et al. [M. Amlouk, M.A. Ben Said, N. Kamoun, S. Belgacem, N. Brunet, D. Barjon, Japan Journal of Applied Physics 38 (1999) 26-30]; Lazzez et al. [S. Lazzez, K. Boubaker, M. Amlouk, Indirect measurement of Zn-doped In2S3 NANO films SPECIFIC heat capacity, International Journal of Nanoscience 7 (2008) 1–5.]; Lazzez et al. [S. Lazzez, K. Boubaker, T. Ben Nasrallah, M. Mnari, R. Chtourou, M. Amlouk, S. Belgacem, Structural and optoelectronic properties of InZnS sprayed layers, Acta Physica Polonica A 114 (2008) 869–880.] investigated the band gap shift, the structural and morphological changes induced by this doping. In this study, a quantitative comparative evaluation of the thermal properties of the as-grown layers is carried out. The obtained results, parallel to further information, plea for the superior thermal efficiency of the recently proposed Zn-doped ternary compounds. 相似文献
15.
C. Sudakar P. Kharel R. Suryanarayanan J.S. Thakur V.M. Naik R. Naik G. Lawes 《Journal of magnetism and magnetic materials》2008
Thin films of pure TiO2 have been prepared using both spin-coating and sputter-deposition techniques on sapphire and quartz substrates. The structural characteristics of the films have been investigated in detail using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). When annealed in vacuum, all films demonstrate room temperature ferromagnetism, while the air-annealed samples show much smaller, often negligible, magnetic moments. The magnetization of the vacuum-annealed sputtered samples depends on film thickness, with the volume magnetization decreasing monotonically with increasing thickness. Furthermore, the magnetization per unit area also decreases slightly with increasing film thickness. These results suggest that ferromagnetism in the vacuum-annealed TiO2 films is mediated by surface defects or interfacial effects, but does not arise from stoichiometric crystalline TiO2. 相似文献
16.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C. 相似文献
17.
Jian Leng Yuqiong Li Dongpu Zhang Xiaoyi Liao Wei Xue 《Applied Surface Science》2010,256(20):5832-5836
Y2O3 thin films were deposited by ion beam assisted deposition (IBAD) and the effects of fabrication parameters such as substrate temperature and ion energy on the structure, optical and electrical properties of the films were investigated. The results show that the deposited Y2O3 films had less optical absorption, larger refractive index, and better film crystallinity with the increase of substrate temperature or ion energy. The as-deposited Y2O3 films without ion-beam bombardment had larger relative dielectric constant (?r) and the ?r decreased with time even over by 40%, while the ?r of films prepared with high ion energy had less changes, only less than 3%. Also, with the increase of ion energy, the electrical breakdown strength and the figure of merit increased. 相似文献
18.
T.P. Gujar 《Applied Surface Science》2008,254(13):4186-4190
Monoclinic bismuth oxide (Bi2O3) films have been prepared by thermal oxidation of vacuum evaporated bismuth thin films onto the glass substrates. In order to obtain the single phase Bi2O3, the oxidation temperature was varied in the range of 423-573 K by an interval of 50 K. The as-deposited bismuth and oxidized Bi2O3 films were characterized for their structural, surface morphological, optical and electrical properties by means of X-ray diffraction, scanning electron microscopy (SEM), optical absorption and electrical resistivity measurements, respectively. The X-ray analyses revealed the formation of polycrystalline mixed phases of Bi2O3 (monoclinic, α-Bi2O3 and tetragonal, β-Bi2O3) at oxidation temperatures up to 523 K, while at an oxidation temperature of 573 K, a single-phase monoclinic α-Bi2O3 was formed. From SEM images, it was observed that of as-deposited Bi films consisted of the well-defined isolated crystals of different shapes while after thermal oxidation the smaller dispersed grains were found to be merged to form bigger grains. The changes in the optical properties of Bi2O3 films obtained by thermal oxidation at various temperatures were studied from optical absorption spectra. The electrical resistivity measurement depicted semiconducting nature of Bi2O3 with high electrical resistivity at room temperature. 相似文献
19.
Li-Jian Meng V. Teixeira Frank Placido M.P. dos Santos 《Applied Surface Science》2006,252(22):7970-7974
TiO2 thin films were deposited on the glass substrates by dc reactive magnetron sputtering technique at different sputtering pressures (2 × 10−3 to 2 × 10−2 mbar). The films prepared at low pressures have an anatase phase, and the films prepared at high pressures have an amorphous phase. The optical properties were studied by measuring the transmittance and the ellipsometric spectra. The optical constants of the films in the visible range were obtained by fitting the transmittance combined with the ellipsometry measurements using the classical model with one oscillator. The refractive index of the films decreases from 2.5 until 2.1 as the sputtering pressure increases from 2 × 10−3 to 2 × 10−2 mbar. The films prepared at the pressure higher than 6 × 10−3 mbar show a volume inhomogeneity. This volume inhomogeneity has been calculated by fitting the transmittance and the ellipsometric spectra. The volume inhomogeneity of the film prepared at the highest sputtering pressure is about 10%. Although the films prepared at high pressures show a large volume inhomogeneity, they have low extinction coefficients. It is suggested that the anatase phase results in more light scattering than amorphous phase does, and then a high extinction coefficient. 相似文献
20.
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass substrate and subsequently irradiated by UV radiation using a KrF excimer laser. In this work, we have study the influence of the laser fluence (F) ranging between 0.05 and 0.40 mJ/cm2 on the constitution and microstructure of the deposited films. Irradiated thin films are characterized by profilometry, scanning electron microscopy and X-ray diffraction. As deposited films are amorphous, while irradiated films present an anatase structure. The crystallinity of the films strongly varies as a function of F with maximum for F = 0.125 J/cm2. In addition to the modification of their constitution, the irradiated areas present a strongly modified microstructure with appearance of nanoscale features. The physico-chemical mechanisms of these structural modifications are discussed based on the theory of nucleation. 相似文献